
Basic Derivative Rules

Math 140: Calculus with Analytic Geometry

Key Topics

• Constant and power rules

• Constant multiple and sum/difference rules

• Differentiating polynomials efficiently

• Interpreting derivatives as slopes and rates of change

1 Why We Need Derivative Rules

The limit definition

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

allows us to compute derivatives from first principles, but repeating this limit calculation for every
new function quickly becomes impractical. In this lecture we develop a small collection of derivative
rules that let us compute derivatives efficiently.

2 Constant and Power Rules

Theorem 2.1 (Constant Rule). If f(x) = c, where c is a constant, then f ′(x) = 0.

Proof. Fix a. Using the limit definition,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

c− c

h
= 0.

Since a was arbitrary, f ′(x) = 0 for all x.

Theorem 2.2 (Power Rule for Positive Integers). If f(x) = xn where n is a positive integer, then

f ′(x) = nxn−1.

Proof. Fix a and let f(x) = xn. Then

f ′(a) = lim
h→0

(a+ h)n − an

h
.

By the binomial theorem,

(a+ h)n = an +

(
n

1

)
an−1h+

(
n

2

)
an−2h2 + · · ·+ hn.

Subtract an and factor out h:

(a+ h)n − an = h

((
n

1

)
an−1 +

(
n

2

)
an−2h+ · · ·+ hn−1

)
.
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Therefore,
(a+ h)n − an

h
=

(
n

1

)
an−1 +

(
n

2

)
an−2h+ · · ·+ hn−1.

Taking h → 0 gives

f ′(a) =

(
n

1

)
an−1 = nan−1.

Since a was arbitrary, f ′(x) = nxn−1.

Example 2.1. Differentiate f(x) = x5.

By the power rule,
f ′(x) = 5x4.

Example 2.2. Differentiate f(x) = 3
√
x = x1/3.

We will later justify the power rule for negative and rational exponents using the quotient rule
and implicit differentiation. A complete justification for arbitrary real exponents will be given after
logarithmic differentiation is introduced. For now, we record the expected result:

d

dx
x1/3 =

1

3
x−2/3.

3 Linearity Rules

The next two rules explain how derivatives behave with respect to addition and constant multiples.

Theorem 3.1 (Constant Multiple Rule). If f(x) = c g(x) where c is a constant and g is differen-
tiable, then

f ′(x) = c g′(x).

Proof. Fix a. Using the limit definition and factoring out the constant c,

f ′(a) = lim
h→0

c g(a+ h)− c g(a)

h
= lim

h→0
c
g(a+ h)− g(a)

h

= c lim
h→0

g(a+ h)− g(a)

h
= c g′(a).

Theorem 3.2 (Sum and Difference Rules). If f(x) = g(x)±h(x) and both g and h are differentiable,
then

f ′(x) = g′(x)± h′(x).

Proof. Fix a. Using the limit definition and limit laws,

f ′(a) = lim
h→0

(g(a+ h)± h(a+ h))− (g(a)± h(a))

h

= lim
h→0

(
g(a+ h)− g(a)

h
± h(a+ h)− h(a)

h

)
= lim

h→0

g(a+ h)− g(a)

h
± lim

h→0

h(a+ h)− h(a)

h

= g′(a)± h′(a).
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4 Differentiating Polynomials

Combining the constant rule, power rule, constant multiple rule, and sum/difference rules allows
us to differentiate polynomials quickly.

Example 4.1. Differentiate p(x) = 4x6 − 3x2 + 7x− 9.

p′(x) = 24x5 − 6x+ 7.

Example 4.2. Find the equation of the tangent line to y = x3 − 2x at x = 1.

First compute the derivative:
y′ = 3x2 − 2.

At x = 1, the slope is m = 3(1)2 − 2 = 1. The point on the curve is (1, 13 − 2 · 1) = (1,−1). Thus
the tangent line is

y + 1 = 1(x− 1) =⇒ y = x− 2.
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5 Why This Matters for Calculus

• Derivative rules let us compute slopes and rates of change quickly without redoing limit
calculations.

• The power rule and linearity rules are the foundation for differentiating polynomials and
many other functions.

• Efficient differentiation is essential for optimization, graphing, and motion problems.
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