Derivatives of Exponential and Logarithmic Functions
Math 140: Calculus with Analytic Geometry

Key Topics

e The natural exponential function e*

e Derivative of e* from first principles

o Derivatives of exponential functions a* and e9()

o The natural logarithm In(x) as the inverse of e*

e Derivatives of logarithmic functions and the chain rule

o Using implicit differentiation with exponential and logarithmic functions

e Tangent lines to exponential and logarithmic curves

1 Motivation

Exponential and logarithmic functions arise naturally in mathematics and the sciences. Unlike
polynomial and trigonometric functions, these functions are defined using limits and inverse rela-
tionships. Their derivatives exhibit remarkably simple and useful forms.

2 The Natural Exponential Function

Definition 2.1. The natural exponential function is the function
f(z) =€,

where e is the unique real number such that
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This defining limit determines the derivative of e”.
Theorem 2.1. p
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Proof. Using the limit definition of the derivative,
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By the defining property of e,
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3 Derivatives of Exponential Functions

Theorem 3.1. If f(z) = e9*), then
f(z) = "y ().

Proof. This follows immediately from the chain rule.

Example 3.1. Differentiate f(x) = 3o’
Let u = 322. Then ,
f'(z) = e* - 6z = 6xe>.

Example 3.2. Differentiate g(x) = e~ sin(x).

Using the product rule and chain rule,

g (x) = —e "sin(z) + e~ cos(x).
Example 3.3. Find the equation of the tangent line to y = e atz=1.
First compute the derivative using the chain rule:

4
dx

(er) = . 2.

Thus the slope at x =1 is
m=2-1-¢e' = 2e.
The point on the curve is (1,e). Therefore, the tangent line is
y—e=2e(x—1).

A sketch of the curve and its tangent line is shown in Figure 1.

4 Exponential Functions with Other Bases

Theorem 4.1. Ifa >0 and a # 1, then
d

o (a®) = a”In(a).

Remark 4.1. This formula follows from writing a® = ¢*™® and applying the chain rule.

Example 4.1. Differentiate h(x) = 2*.

h'(z) = 2% In(2).
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Figure 1: The graph of y = e and the tangent line at x = 1.

5 The Natural Logarithm

Definition 5.1. The natural logarithm In(z) is the inverse function of €, defined for x > 0.

Theorem 5.1. p )
%(ln(x)) = x> 0.
Proof. Since In(x) is the inverse of e*, we have
@) = g,

Differentiate both sides implicitly:

Substitute @) = g:

d
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6 Logarithmic Examples

Example 6.1. Differentiate f(z) = In(z? + 1).

Using the chain rule,
1 2z
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fi(z) =
Example 6.2. Differentiate g(z) = zIn(z).

Using the product rule,
g (x) =In(z) + 1.



7 Tangent Line Example

Example 7.1. Find the equation of the tangent line to y = In(x) at x = 1.

The point is (1,0). The tangent line is
y=x—1.

Figure 2 shows the curve and the tangent line at x = 1.

)

-1+

Figure 2: The graph of y = In(x) and the tangent line at z = 1.

8 Why This Matters for Calculus

Exponential and logarithmic derivatives complete our toolkit for differentiating a wide range of
functions.

They allow us to model rapid growth and decay.

e Their simple derivative rules make them especially powerful.
o They interact naturally with the chain rule and implicit differentiation.

e They are essential for optimization, related rates, and differential equations.



