
Derivatives of Exponential and Logarithmic Functions
Math 140: Calculus with Analytic Geometry

Key Topics

• The natural exponential function ex

• Derivative of ex from first principles

• Derivatives of exponential functions ax and eg(x)

• The natural logarithm ln(x) as the inverse of ex

• Derivatives of logarithmic functions and the chain rule

• Using implicit differentiation with exponential and logarithmic functions

• Tangent lines to exponential and logarithmic curves

1 Motivation

Exponential and logarithmic functions arise naturally in mathematics and the sciences. Unlike
polynomial and trigonometric functions, these functions are defined using limits and inverse rela-
tionships. Their derivatives exhibit remarkably simple and useful forms.

2 The Natural Exponential Function

Definition 2.1. The natural exponential function is the function

f(x) = ex,

where e is the unique real number such that

lim
h→0

eh − 1
h

= 1.

This defining limit determines the derivative of ex.

Theorem 2.1.
d

dx

(
ex)

= ex.

Proof. Using the limit definition of the derivative,

d

dx

(
ex)

= lim
h→0

ex+h − ex

h
= lim

h→0

ex(eh − 1)
h

.

Factor out ex:
= ex lim

h→0

eh − 1
h

.
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By the defining property of e,

lim
h→0

eh − 1
h

= 1,

so
d

dx

(
ex)

= ex.

3 Derivatives of Exponential Functions

Theorem 3.1. If f(x) = eg(x), then

f ′(x) = eg(x)g′(x).

Proof. This follows immediately from the chain rule.

Example 3.1. Differentiate f(x) = e3x2.

Let u = 3x2. Then
f ′(x) = eu · 6x = 6xe3x2

.

Example 3.2. Differentiate g(x) = e−x sin(x).

Using the product rule and chain rule,

g′(x) = −e−x sin(x) + e−x cos(x).

Example 3.3. Find the equation of the tangent line to y = ex2 at x = 1.

First compute the derivative using the chain rule:
d

dx

(
ex2)

= ex2 · 2x.

Thus the slope at x = 1 is
m = 2 · 1 · e1 = 2e.

The point on the curve is (1, e). Therefore, the tangent line is

y − e = 2e(x − 1).

A sketch of the curve and its tangent line is shown in Figure 1.

4 Exponential Functions with Other Bases

Theorem 4.1. If a > 0 and a ̸= 1, then
d

dx

(
ax)

= ax ln(a).

Remark 4.1. This formula follows from writing ax = ex ln(a) and applying the chain rule.
Example 4.1. Differentiate h(x) = 2x.

h′(x) = 2x ln(2).
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Figure 1: The graph of y = ex2 and the tangent line at x = 1.

5 The Natural Logarithm

Definition 5.1. The natural logarithm ln(x) is the inverse function of ex, defined for x > 0.

Theorem 5.1.
d

dx

(
ln(x)

)
= 1

x
, x > 0.

Proof. Since ln(x) is the inverse of ex, we have

eln(x) = x.

Differentiate both sides implicitly:
eln(x) d

dx

(
ln(x)

)
= 1.

Substitute eln(x) = x:
x

d

dx

(
ln(x)

)
= 1,

so
d

dx

(
ln(x)

)
= 1

x
.

6 Logarithmic Examples

Example 6.1. Differentiate f(x) = ln(x2 + 1).

Using the chain rule,
f ′(x) = 1

x2 + 1 · 2x = 2x

x2 + 1 .

Example 6.2. Differentiate g(x) = x ln(x).

Using the product rule,
g′(x) = ln(x) + 1.
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7 Tangent Line Example

Example 7.1. Find the equation of the tangent line to y = ln(x) at x = 1.

y′ = 1
x

, y′(1) = 1.

The point is (1, 0). The tangent line is
y = x − 1.

Figure 2 shows the curve and the tangent line at x = 1.
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Figure 2: The graph of y = ln(x) and the tangent line at x = 1.

8 Why This Matters for Calculus

Exponential and logarithmic derivatives complete our toolkit for differentiating a wide range of
functions.

• They allow us to model rapid growth and decay.

• Their simple derivative rules make them especially powerful.

• They interact naturally with the chain rule and implicit differentiation.

• They are essential for optimization, related rates, and differential equations.
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