
Implicit Differentiation
Math 140: Calculus with Analytic Geometry

Key Topics

• Implicitly defined functions

• Differentiating equations involving both x and y

• Applying the chain rule to expressions involving y

• Solving for dy

dx

• Tangent lines to implicitly defined curves

• Higher-order derivatives using implicit differentiation

1 Motivation

Thus far, we have differentiated functions written explicitly in the form y = f(x). However, many
curves arise from equations where y is not isolated on one side. For example,

x2 + y2 = 1, x3 + xy + y3 = 6.

To differentiate such equations, we use implicit differentiation.

2 Implicitly Defined Functions

Definition 2.1. An equation involving both x and y is said to define y implicitly as a function of
x if y is not explicitly solved in terms of x.

Remark 2.1. Even when y is not written as y = f(x), it may still represent a function (or several
functions) of x locally.

3 The Idea of Implicit Differentiation

When differentiating implicitly, we treat y as a function of x and apply the chain rule whenever a
derivative of y appears.

Remark 3.1. Whenever you differentiate an expression involving y, multiply by dy

dx
. For example,

d

dx

(
y2)

= 2y
dy

dx
,

d

dx

(
sin(y)

)
= cos(y)dy

dx
.
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4 Basic Examples

Example 4.1. Differentiate the equation x2 + y2 = 1 with respect to x.

Differentiate both sides:
d

dx
(x2) + d

dx
(y2) = d

dx
(1).

This gives
2x + 2y

dy

dx
= 0.

Solving for dy

dx
,

dy

dx
= −x

y
.

Example 4.2. Differentiate x3 + xy + y3 = 6.

Differentiate both sides:
d

dx
(x3) + d

dx
(xy) + d

dx
(y3) = d

dx
(6).

Compute each term:
3x2 +

(
x

dy

dx
+ y

)
+ 3y2 dy

dx
= 0.

Group terms involving dy

dx
:

(x + 3y2)dy

dx
= −(3x2 + y).

Thus,
dy

dx
= −3x2 + y

x + 3y2 .

5 Trigonometric Example

Example 5.1. Differentiate sin(xy) = x.

Differentiate both sides:
d

dx

(
sin(xy)

)
= d

dx
(x).

Apply the chain rule to the left side:

cos(xy) d

dx
(xy) = 1.

Since d

dx
(xy) = x

dy

dx
+ y, we obtain

cos(xy)
(

x
dy

dx
+ y

)
= 1.

Solve for dy

dx
:

x cos(xy)dy

dx
= 1 − y cos(xy), dy

dx
= 1 − y cos(xy)

x cos(xy) .
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6 Tangent Line via Implicit Differentiation

Example 6.1. Find the equation of the tangent line to the circle x2 + y2 = 25 at the point (3, 4).

From implicit differentiation,

2x + 2y
dy

dx
= 0 ⇒ dy

dx
= −x

y
.

At (3, 4),
dy

dx
= −3

4 .

The tangent line is
y − 4 = −3

4(x − 3).
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7 Second Derivatives via Implicit Differentiation

Implicit differentiation can be applied repeatedly to compute higher-order derivatives.

Example 7.1. For the curve x2 + y2 = 1, find d2y

dx2 .

From the first derivative,
dy

dx
= −x

y
.

Differentiate again using the quotient rule:

d2y

dx2 = −
y − x dy

dx

y2 .

Substitute dy

dx
= −x

y
:

d2y

dx2 = −
y − x

(
−x

y

)
y2 = −

y + x2

y

y2 = −x2 + y2

y3 .

Since x2 + y2 = 1 on the curve,
d2y

dx2 = − 1
y3 .
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8 Common Pitfalls

Remark 8.1. • Forgetting to multiply by dy

dx
when differentiating expressions involving y.

• Forgetting the product rule when differentiating terms such as xy.

• For tangent line problems, forgetting to evaluate dy

dx
at the given point.

9 Why This Matters for Calculus

Implicit differentiation allows us to analyze curves defined by equations rather than explicit formu-
las.

• Many important curves, such as circles and ellipses, are naturally defined implicitly.

• It extends the chain rule to more general situations.

• It is essential for related rates, optimization with constraints, and curve sketching.

• It prepares us for inverse functions and logarithmic differentiation.
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