Calculus with Analytic Geometry

Thomas R. Cameron

January 10, 2024

1 Key Topics

Today we review trig functions.

2 Trig Functions

The six standard trig functions are defined over the right triangle

$$
\begin{aligned}
& \sin (\theta)=\frac{\text { Opposite }}{\text { Hypotenuse }} \\
& \cos (\theta)=\frac{\text { Adjacent }}{\text { Hypotenuse }} \\
& \tan (\theta)=\frac{\text { Opposite }}{\text { Adjacent }} \\
& \csc (\theta)=\frac{\text { Hypotenuse }}{\text { Opposite }} \\
& \sec (\theta)=\frac{\text { Hypotenuse }}{\text { Adjacent }} \\
& \cot (\theta)=\frac{\text { Adjacent }}{\text { Opposite }}
\end{aligned}
$$

From these definitions, we can derive some important identities. To this end, let O denote the opposite side, A denote the adjacent side, and H the hypotenuse side of the right triangle. For example, consider the Pythagorean Identity:

$$
\begin{aligned}
\sin ^{2}(\theta)+\cos ^{2}(\theta) & =\left(\frac{O}{H}\right)^{2}+\left(\frac{A}{H}\right)^{2} \\
& =\frac{O^{2}+A^{2}}{H^{2}} \\
& =\frac{H^{2}}{H^{2}}=1
\end{aligned}
$$

By dividing the Pythagorean Identity by $\sin ^{2}(\theta)$ or $\cos ^{2}(\theta)$, we obtain the following identities

$$
\begin{aligned}
1+\cot ^{2}(\theta) & =\csc ^{2}(\theta) \\
1+\tan ^{2}(\theta) & =\sec ^{2}(\theta)
\end{aligned}
$$

2.1 Unit Circle

By embedding right triangles into the unit circle (circle of radius 1 centered at the origin), we are able to identify points on the circle using cosine and sine functions. For example, see Figure 1 where we have a right triangle with hypotenuse 1 embedded in the 1st quadrant of the unit circle such that the adjacent side lies

Figure 1: Unit circle with right triangle embedded inside the 1st quadrant
on the x -axis and the opposite side is parallel to the y -axis. Hence, the points on the unit circle in the 1 st quadrant can be identified by $(\cos (\theta), \sin (\theta))$ as defined on the right triangle.

We extend the definitions of $\cos (\theta)$ and $\sin (\theta)$ for all angles of θ using the points on the unit circle. For example, the sine (red) and cosine (blue) functions are shown over the domain $[-\pi, \pi]$ in Figure 2 .

Figure 2: Sine (red) and Cosine (blue) functions

2.2 Inverse Trig Functions

The six standard trig functions map an angle θ to a ratio. The inverse trig functions map a ratio to an angle θ. For example,

$$
\begin{gathered}
\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \leftrightarrow \arccos \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6} \\
\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \leftrightarrow \arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6} \\
\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}} \leftrightarrow \arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}
\end{gathered}
$$

3 Exercises

Let $y=\arcsin (x)$, where $0<y<\pi / 2$. Then, draw a right triangle with angle y, opposite side x, and hypotenuse 1 . Then, identify the following values in terms of x.
a. $\cos (y)$
b. $\tan (y)$
c. $\csc (y)$

