Calculus with Analytic Geometry

Thomas R. Cameron

January 12, 2024

1 Key Topics

Today we review log and exponential functions.

2 Exponential Functions

The exponential function with base b > 0 is defined by $f(x) = b^x$. The long term behavior of an exponential function varies depending on the value of b. In particular, if 0 < b < 1, then f(x) approaches zero as x gets bigger; if b = 1, then f(x) = 1 for all x; if b > 1, then f(x) approaches infinity as x gets bigger.

In calculus, a natural choice for the base of an exponential function is Euler's number:

 $e = 2.71828\ldots$

This number was first introduced by Jacob Bernoulli in 1683 using a hypothetical financial transaction: Imagine you invest 1 dollar at 100% annual interest. Given that your investment is compounded $n \ge 1$ times, Table 1 shows the value of your investment at the end of the year. As n gets bigger, the value of your investment approaches the number e.

n	Value
1	2
2	2.25
3	2.37037
4	2.44140
:	:
10	$2.59374\ldots$
÷	÷
100	2.70481
÷	÷

Table 1: Hypothetical financial transaction proposed by Jacob Bernoulli

In the figure on the right, we display the exponential functions e^x (red), 4^x (green), e^{-x} (blue), and 4^{-x} (purple). Note that the graph of each of the exponential functions includes the point (0, 1).

In general, exponential functions can be written in the form $f(x) = ab^x$, where b > 0 is the base and a is an arbitrary constant. A common algebraic problem is to determine constants a and b given two points on the graph.

3 Logarithmic Functions

The exponential function $f(x) = b^x$ has domain $(-\infty, \infty)$ and range $(0, \infty)$. Moreover, over this domain, the exponential function f(x) is one-to-one (passes the horizontal line test); hence, f(x) has an inverse. By definition, the inverse function g(x) satisfies

$$y = f(x) \Leftrightarrow x = g(y).$$

Hence, the inverse function q(x) has domain $(0,\infty)$ and range $(-\infty,\infty)$.

In particular, the inverse of the exponential function $f(x) = b^x$ is known as the log base b function and is denoted by $g(x) = \log_{b}(x)$. In the case of the natural base e, the inverse function is known as the natural logarithm function and is denoted by $q(x) = \ln(x)$.

In the figure on the right, we display the exponential functions e^x (red), 4^x (blue) and their corresponding inverse functions $\ln(x)$ (dashed-red), $\log_4(x)$ (dashedblue). Note that the graph of each of the exponential functions includes the point (0,1) and the graph of each of the logarithmic functions includes the point (1, 0).

Properties 4

When working with exponential or logarithmic functions, it is important to be aware of the following properties: 1. $b^0 = 1$

1. $\log_{h}(1) = 0$

- 2. $b^x b^y = b^{x+y}$ 2. $\log_b(xy) = \log_b(x) + \log_b(y)$
- 3. $(b^x)^y = b^{xy}$ 3. $\log_b (x^y) = y \log_b(x)$
- 4. $\log_b\left(\frac{x}{y}\right) = \log_b(x) \log_b(y)$ 4. $\frac{b^x}{b^y} = b^{x-y}$

It is worth emphasizing that the log properties can be derived from the exponential properties. For example, by definition of the inverse,

$$b^0 = 1 \iff \log_b(1) = 0.$$

As another example, we will show that exponential property 2 implies logarithmic property 2. To this end, let $x = b^w$ and $y = b^z$. Then,

$$\log_b(xy) = \log_b (b^w b^z)$$

= $\log_b (b^{w+z})$
= $w + z$
= $\log_b (b^w) + \log_b (b^z) = \log_b(x) + \log_b(y).$

5 Exercises

- a. Identify the exponential function of the form $y = ab^x$ whose graph intersections the points (0, 2) and (3, 54).
- b. Solve the following log/exponential equations
 - $8e^x 12 = 7$
 - $e^{x-3} = 5$
 - $\ln(x-2)^2 = 12$
 - $\ln(x) + \ln(x 2) = \ln(3)$