# Calculus with Analytic Geometry 

Thomas R. Cameron

January 12, 2024

## 1 Key Topics

Today we review $\log$ and exponential functions.

## 2 Exponential Functions

The exponential function with base $b>0$ is defined by $f(x)=b^{x}$. The long term behavior of an exponential function varies depending on the value of $b$. In particular, if $0<b<1$, then $f(x)$ approaches zero as $x$ gets bigger; if $b=1$, then $f(x)=1$ for all $x$; if $b>1$, then $f(x)$ approaches infinity as $x$ gets bigger.

In calculus, a natural choice for the base of an exponential function is Euler's number:

$$
e=2.71828 \ldots
$$

This number was first introduced by Jacob Bernoulli in 1683 using a hypothetical financial transaction: Imagine you invest 1 dollar at $100 \%$ annual interest. Given that your investment is compounded $n \geq 1$ times, Table 1 shows the value of your investment at the end of the year. As $n$ gets bigger, the value of your investment approaches the number $e$.

| n | Value |
| :---: | :---: |
| 1 | 2 |
| 2 | 2.25 |
| 3 | $2.37037 \ldots$ |
| 4 | $2.44140 \ldots$ |
| $\vdots$ | $\vdots$ |
| 10 | $2.59374 \ldots$ |
| $\vdots$ | $\vdots$ |
| 100 | $2.70481 \ldots$ |
| $\vdots$ | $\vdots$ |

Table 1: Hypothetical financial transaction proposed by Jacob Bernoulli

In the figure on the right, we display the exponential functions $e^{x}$ (red), $4^{x}$ (green), $e^{-x}$ (blue), and $4^{-x}$ (purple). Note that the graph of each of the exponential functions includes the point $(0,1)$.


In general, exponential functions can be written in the form $f(x)=a b^{x}$, where $b>0$ is the base and $a$ is an arbitrary constant. A common algebraic problem is to determine constants $a$ and $b$ given two points on the graph.

## 3 Logarithmic Functions

The exponential function $f(x)=b^{x}$ has domain $(-\infty, \infty)$ and range $(0, \infty)$. Moreover, over this domain, the exponential function $f(x)$ is one-to-one (passes the horizontal line test); hence, $f(x)$ has an inverse. By definition, the inverse function $g(x)$ satisfies

$$
y=f(x) \Leftrightarrow x=g(y) .
$$

Hence, the inverse function $g(x)$ has domain $(0, \infty)$ and range $(-\infty, \infty)$.
In particular, the inverse of the exponential function $f(x)=b^{x}$ is known as the log base $b$ function and is denoted by $g(x)=\log _{b}(x)$. In the case of the natural base $e$, the inverse function is known as the natural logarithm function and is denoted by $g(x)=\ln (x)$.

In the figure on the right, we display the exponential functions $e^{x}$ (red), $4^{x}$ (blue) and their corresponding inverse functions $\ln (x)$ (dashed-red), $\log _{4}(x)$ (dashedblue). Note that the graph of each of the exponential functions includes the point $(0,1)$ and the graph of each of the logarithmic functions includes the point $(1,0)$.


## 4 Properties

When working with exponential or logarithmic functions, it is important to be aware of the following properties:

1. $b^{0}=1$
2. $\log _{b}(1)=0$
3. $b^{x} b^{y}=b^{x+y}$
4. $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$
5. $\left(b^{x}\right)^{y}=b^{x y}$
6. $\log _{b}\left(x^{y}\right)=y \log _{b}(x)$
7. $\frac{b^{x}}{b^{y}}=b^{x-y}$
8. $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$

It is worth emphasizing that the $\log$ properties can be derived from the exponential properties. For example, by definition of the inverse,

$$
b^{0}=1 \Leftrightarrow \log _{b}(1)=0
$$

As another example, we will show that exponential property 2 implies logarithmic property 2 . To this end, let $x=b^{w}$ and $y=b^{z}$. Then,

$$
\begin{aligned}
\log _{b}(x y) & =\log _{b}\left(b^{w} b^{z}\right) \\
& =\log _{b}\left(b^{w+z}\right) \\
& =w+z \\
& =\log _{b}\left(b^{w}\right)+\log _{b}\left(b^{z}\right)=\log _{b}(x)+\log _{b}(y)
\end{aligned}
$$

## 5 Exercises

a. Identify the exponential function of the form $y=a b^{x}$ whose graph intersections the points $(0,2)$ and $(3,54)$.
b. Solve the following $\log$ /exponential equations

- $8 e^{x}-12=7$
- $e^{x-3}=5$
- $\ln (x-2)^{2}=12$
- $\ln (x)+\ln (x-2)=\ln (3)$

