Calculus with Analytic Geometry

Thomas R. Cameron

January 16, 2024

1 Key Topics

Today we conclude our review of log and exponential functions, and we introduce the limit of a function.

2 Log and Exponential Functions

Recall the exponential and log properties shown below.

1. $b^{0}=1$
2. $\log _{b}(1)=0$
3. $b^{x} b^{y}=b^{x+y}$
4. $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$
5. $\left(b^{x}\right)^{y}=b^{x y}$
6. $\log _{b}\left(x^{y}\right)=y \log _{b}(x)$
7. $\frac{b^{x}}{b^{y}}=b^{x-y}$
8. $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$

It can be shown that the exponential and \log properties are equivalent. For example, by definition of the inverse,

$$
b^{0}=1 \Leftrightarrow \log _{b}(1)=0 .
$$

As another example, we will show that exponential property 2 implies logarithmic property 2 . To this end, let $x=b^{w}$ and $y=b^{z}$. Then,

$$
\begin{aligned}
\log _{b}(x y) & =\log _{b}\left(b^{w} b^{z}\right) \\
& =\log _{b}\left(b^{w+z}\right) \\
& =w+z \\
& =\log _{b}\left(b^{w}\right)+\log _{b}\left(b^{z}\right)=\log _{b}(x)+\log _{b}(y) .
\end{aligned}
$$

Finally, we will solve the following log equation:

$$
\ln (x)+\ln (x-2)=\ln (3) .
$$

3 Limits of Functions

The limit of a function f at c is denoted by

$$
\lim _{x \rightarrow c} f(x) .
$$

If it exists, the limit is the value that the function approaches as its input approaches, but is not equal to, c.

Consider the piecewise defined function

$$
f(x)= \begin{cases}0 & -4 \leq x \leq-2 \\ x & -2<x<2 \\ 4-\frac{1}{2} x^{2} & 2<x \leq 4\end{cases}
$$

Note the following limits:

$$
\lim _{x \rightarrow-2} f(x)=D N E \quad \lim _{x \rightarrow 2} f(x)=2
$$

The limit is an essential concept in calculus as it allows us to describe what happens to a function as its input approaches a value (or infinity). For example, the function f shown above is undefined at $x=2$. Hence, it makes no sense to discuss the value of $f(2)$. However, we can discuss the value of f as x approaches, but is not equal to, 2 .

One sided limits also play an important role. The right (left) sided limits of a function f at c are denoted (respectively) by

$$
\lim _{x \rightarrow c^{+}} f(x) \quad \lim _{x \rightarrow c^{-}} f(x)
$$

and is equal to the value the function approaches as its input approaches, but is not equal to, c from the right (left). Note that if the limit exists then

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)
$$

Consider the piecewise defined function

$$
f(x)= \begin{cases}8+2 x & -4 \leq x<-2 \\ x^{2} & -2<x \leq 2 \\ \frac{1}{x-2} & x>2\end{cases}
$$

Note the following limits:

$$
\begin{aligned}
\lim _{x \rightarrow-2^{-}} f(x) & =\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2} f(x)=4 \\
\lim _{x \rightarrow 2^{-}} f(x) & =4 \\
\lim _{x \rightarrow 2^{+}} f(x) & =+\infty \\
\lim _{x \rightarrow+\infty} f(x) & =0
\end{aligned}
$$

