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1 Key Topics
Today we conclude our review of log and exponential functions, and we introduce the limit of a function.

2 Log and Exponential Functions

Recall the exponential and log properties shown below.

L.0=1 1. log,(1) =0

2. bEPY = pTty 2. log,(zy) = log,(x) + log, (y)

3. (%)Y =b™Y 3. log,, (z¥) = ylog,(z)

4. Y — pry 4. log, | Z) = logy(z) — log,(y)
by 8o | y Sb Sp\Y

It can be shown that the exponential and log properties are equivalent. For example, by definition of the
inverse,
=1 & log, (1) =0.

As another example, we will show that exponential property 2 implies logarithmic property 2. To this end,
let z = 6% and y = b*. Then,
log, (zy) = log,, (b"0%)
= log, (b“17%)
=w+z
= log;, (b") + log,, (b%) = log; (z) + logy(y).

Finally, we will solve the following log equation:

In(z) + In(x — 2) = In(3).

3 Limits of Functions

The limit of a function f at ¢ is denoted by
lim f(z).

Tr—c

If it exists, the limit is the value that the function approaches as its input approaches, but is not equal to, c.
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The limit is an essential concept in calculus as it allows us to describe what happens to a function as
its input approaches a value (or infinity). For example, the function f shown above is undefined at z = 2.
Hence, it makes no sense to discuss the value of f(2). However, we can discuss the value of f as x approaches,
but is not equal to, 2.

One sided limits also play an important role. The right (left) sided limits of a function f at ¢ are denoted
(respectively) by

lim f(x) lim f(x)

z—ct T—c

and is equal to the value the function approaches as its input approaches, but is not equal to, ¢ from the
right (left). Note that if the limit exists then

lim f(z) = lim f(z) = lim f(z).

T—cC z—ct T—c™
10
Consider the piecewise defined function
8+2xr —4<z<-2
flz) = {22 —2<z<2
w£2 T > 2 I I | :
Note the following limits: 5
Jim f(z)= lim f(z)= lm f(z)
lim f(x) =4 | 1 1 |
e I I
li =
g fe) = e ! HEN
A, f(2) =0 e
-5 0 1 e|> 10



	Key Topics
	Log and Exponential Functions
	Limits of Functions

