Calculus with Analytic Geometry

Thomas R. Cameron

January 19, 2024

1 Key Topics

Last time we used the properties of limits to show that the limit of a polynomial can be found by evaluating the polynomial directly. Today, we review algebraic techniques for evaluating limits that are initially in the indeterminate form $0 / 0$.

1.1 Factoring

Consider the following limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x-2}
$$

Evaluating the numerator and denominator directly, we see that the above limit is in the indeterminate form $0 / 0$. Hence, we factor the numerator and cancel out the common factor before evaluating the limit:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x-2} & =\lim _{x \rightarrow 2} \frac{(x+4)(x-2)}{x-2} \\
& =\lim _{x \rightarrow 2}(x+4)=6
\end{aligned}
$$

This factoring technique can work with some exponential expressions as well; for example, consider the following limit:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{3^{2 x}-1}{3^{x}-1} & =\lim _{x \rightarrow 0} \frac{\left(3^{x}-1\right)\left(3^{x}+1\right)}{3^{x}-1} \\
& =\lim _{x \rightarrow 0} 3^{x}+1=2
\end{aligned}
$$

1.2 Long Division

Consider the following limit

$$
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}
$$

Once again, the limit is in the indeterminate form $0 / 0$. Using long division, we find that

$$
x^{3}-8=(x-2)\left(x^{2}+2 x+4\right)
$$

Therefore, we have

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{x-2} \\
& =\lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right)=12
\end{aligned}
$$

1.3 Rationalization Technique

Consider the following limit

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}
$$

Once again, the limit is in the indeterminate form $0 / 0$. This time, we must use a rationalization technique before evaluating the limit

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+1}+1)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+1}+1}=\frac{1}{2} .
\end{aligned}
$$

1.4 Squeeze Theorem

Transcendental functions can be more difficult to work with in the presence of the indeterminate form $0 / 0$ since they are not easily factored. For example, consider the following limit

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x} .
$$

Using the right triangle embedded in the unit circle, one can show that

$$
\cos (x) \leq \frac{\sin (x)}{x} \leq 1,-\frac{\pi}{2}<x<\frac{\pi}{2} .
$$

Therefore, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \cos (x) & \leq \lim _{x \rightarrow 0} \frac{\sin (x)}{x}
\end{aligned} \leq \lim _{x \rightarrow 0} 1 .
$$

and it follows that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.

2 Exercises

Evaluate each of the following limits:
a. $\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x-1}$
b. $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}$
c. $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)$

