Calculus with Analytic Geometry

Thomas R. Cameron

January 22, 2024

1 Key Topics

Last week, we introduced the concept of the limit of a function, and we learned how to evaluate the limit graphically and analytically. Today, we use the limit of a function to define continuity.

1.1 Continuity

We say that a function $f(x)$ is continuous at c provided that
I. $f(c)$ is defined,
II. $\lim _{x \rightarrow c} f(x)$ exists,
III. $\lim _{x \rightarrow c} f(x)=f(c)$.

For example, we have seen that all polynomial functions $p(x)$ satisfy parts I-III in the above definition, for any c; hence, all polynomial functions are continuous on their entire domain. Furthermore, we can extend this result to rational functions $f(x)=\frac{p(x)}{q(x)}$ using limit properties. In particular, $f(x)$ is continuous for all c such that $q(c) \neq 0$.

It is important to note that we may slightly modify the definition of continuity if we are discussing a value c that is an endpoint of the domain of $f(x)$. For example, \sqrt{x} is continuous at 0 since
I. $\sqrt{0}=0$,
II. $\lim _{x \rightarrow 0^{+}} \sqrt{x}$ exists,
III. $\lim _{x \rightarrow 0^{+}} \sqrt{x}=\sqrt{0}=0$.

Finally, we will often use our knowledge of the properties and graphs of radical and transcendental functions to determine their limiting value. For example,

$$
\begin{aligned}
\lim _{x \rightarrow c} \sqrt{x} & =\sqrt{c}, c \geq 0 \\
\lim _{x \rightarrow c} \sin (x) & =\sin (x),-\infty<c<\infty \\
\lim _{x \rightarrow c} e^{x} & =e^{x},-\infty<c<\infty \\
\lim _{x \rightarrow c} \ln (x) & =\ln (c), c>0 .
\end{aligned}
$$

1.2 Types of Discontinuity

A function $f(x)$ is discontinuous at c if any part of the continuity definition does not hold; in fact, each part of the definition leads to a different type of discontinuity.

1.2.1 Holes and Asymptotes

A hole in the graph of a function occurs at $x=c$ if $f(c)$ is undefined but $\lim _{x \rightarrow c} f(x)$ exists and is finite. A vertical asymptote occurs if $\lim _{x \rightarrow c^{+}} f(x)= \pm \infty$ or $\lim _{x \rightarrow c^{-}} f(x)= \pm \infty$.
Example 1.1. The function

$$
f(x)=x \sin \left(\frac{1}{x}\right)
$$

has a hole at $x=0$. The function

$$
f(x)= \begin{cases}x & x \leq 0 \\ \frac{1}{x} & x>0\end{cases}
$$

has a vertical asymptote at $x=0$.

1.2.2 Jump Discontinuities

A jump discontinuity occurs at $x=c$ if $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}}$both exist and are finite but $\lim _{x \rightarrow c} f(x)$ does not exist, i.e., the left and right sided limits are not equal.
Example 1.2. The function

$$
f(x)= \begin{cases}x & x \leq 0 \\ x^{2}+1 & x>0\end{cases}
$$

has a jump discontinuity at $x=0$.

1.2.3 Removable Discontinuities

A removable discontinuity occurs at $x=c$ if $\lim _{x \rightarrow c} f(x)$ exists and $f(c)$ exists but $f(x)$ is not continuous at c, i.e., the limiting value and the function value are not equal.
Example 1.3. The function

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 2 & x=0\end{cases}
$$

has a removable discontinuity at $x=0$. Note that removable discontinuities can be "repaired" by changing the function value definition to match the limiting value of the function. For instance, if we define $f(0)=0$, then the above function is continuous.

1.3 Intermediate Value Theorem

One important application of the concept of continuity is the intermediate value theorem.
Theorem 1.4 (Intermediate Value Theorem). Suppose that f is continuous on $[a, b], f(a) \neq f(b)$, and k is any value between $f(a)$ and $f(b)$. Then, there exists $a c$ between a and b such that $f(c)=k$.

Example 1.5. Consider the polynomial

$$
p(x)=x^{3}+2 x^{2}+2 x-1
$$

Note that $f(0)<0$ and $f(1)>0$; hence, there exists a c between 0 and 1 such that $f(c)=0$.

2 Exercises

Identify all discontinuities (and types) of the following function

$$
f(x)= \begin{cases}\frac{\sin (x)}{x} & x<0 \\ 2+x & 0 \leq x \leq 2 \\ 1+x^{2} & 2<x \leq 3 \\ \frac{1}{x-3} & x>3\end{cases}
$$

