Calculus with Analytic Geometry

Thomas R. Cameron

January 29, 2024

1 Key Topics

Today, we introduce secant lines, tangent lines, and the derivative.

1.1 Secant and Tangent Lines

Let f be a function and $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ denote points on the graph of f. Then, the secant line connecting the two points is given by

$$
y-y_{0}=m\left(x-x_{0}\right), m=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} .
$$

The tangent line of f at $\left(x_{0}, y_{0}\right)$ is defined by

$$
y-y_{0}=m\left(x-x_{0}\right), m=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

One can visual the tangent line by moving the point $\left(x_{1}, y_{1}\right)$ on the secant line closer and closer to the point $\left(x_{0}, y_{0}\right)$.
Example 1.1. Let $f(x)=1-x^{2}$. The tangent line of f at $(1,0)$ has the form

$$
y-0=m(x-1)
$$

where

$$
\begin{aligned}
m & =\lim _{\Delta x \rightarrow 0} \frac{\left[1-(1+\Delta x)^{2}\right]-\left[1-1^{2}\right]}{\Delta x \rightarrow 0} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1-\left(1+2 \Delta x+\Delta x^{2}\right.}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{-2 \Delta x-\Delta x^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}(-2-\Delta x)=-2 .
\end{aligned}
$$

1.2 The Derivative

Let f be a function. The derivative of f at x is denoted by $f^{\prime}(x)$ and is defined by the slope of the tangent line of f at $(x, f(x))$, i.e.,

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Example 1.2. Let $f(x)=1-x^{2}$. Then, the derivative of f is

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left[1-(x+\Delta x)^{2}\right]-\left[1-x^{2}\right]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left[1-\left(x^{2}+2 x \Delta x+\Delta x^{2}\right]-\left[1-x^{2}\right]\right.}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{-2 x \Delta x-\Delta x^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}(-2 x-\Delta x)=-2 x
\end{aligned}
$$

2 Exercises

Find the derivative of each function below:
a. $f(x)=3 x+4$
b. $f(x)=x^{2}$
c. $f(x)=\sqrt{x}$
d. $f(x)=\frac{1}{x}$

