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1 Key Topics

Today, we introduce secant lines, tangent lines, and the derivative.

1.1 Secant and Tangent Lines

Let f be a function and (z, yo) and (x1,y1) denote points on the graph of f. Then, the secant line connecting
the two points is given by
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The tangent line of f at (¢, yo) is defined by

_ o f(xo+ Az) — f(wo)
= = ma =) m = i SRS

One can visual the tangent line by moving the point (z1,y1) on the secant line closer and closer to the point
(20, Yo)-
Example 1.1. Let f(x) = 1 — x2. The tangent line of f at (1,0) has the form
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1.2 The Derivative
Let f be a function. The derivative of f at x is denoted by f/(z) and is defined by the slope of the tangent

line of f at (z, f(x)), i.e.,
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Ezample 1.2. Let f(x) = 1 — 2. Then, the derivative of f is
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2 Exercises

Find the derivative of each function below:

a. f(x)=3x+4
b. f(z) =2

c. flx)=vx

d f(z)=3
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