Calculus with Analytic Geometry

Thomas R. Cameron

January 30, 2024

1 Key Topics

Today, we continue our discussion of the derivative and use its limit definition to derive basic rules for evaluating the derivative of a function.

Recall that the derivative of a function f is defined by

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

provided the above limit exists. If the limit exists for a single value of x, then we say that f is differentiable at x. If the limit exists for all $x \in[a, b]$, then we say that f is differentiable on $[a, b]$.
Example 1.1. Let $f(x)=\sqrt{x}$. Then,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} \frac{\sqrt{x+\Delta x}+\sqrt{x}}{\sqrt{x+\Delta x}+\sqrt{x}} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt{x+\Delta x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

Note that $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ has domain $(0, \infty)$. Hence, $f(x)=\sqrt{x}$ is differentiable on $(0, \infty)$.

1.1 Basic Derivative Rules

Since the derivative of a function is defined by a limit, we can use the limit properties to derive several basic rules for evaluating the derivative. When describing these rules, it is convenient to use Leibniz's notation:

$$
\frac{d}{d x} f(x)=f^{\prime}(x)
$$

Proposition 1.2. Let f and g be differentiable at x, and let c denote a constant. Then, the following properties hold:
a. $\frac{d}{d x}(c f(x))=c f^{\prime}(x)$
b. $\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)$

Example 1.3. Let $f(x)=3 x^{2}+4 \sqrt{x}-\frac{1}{x}$. Then,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(3 x^{2}\right)+\frac{d}{d x}(4 \sqrt{x})+\frac{d}{d x}\left(-\frac{1}{x}\right) \\
& =3 \frac{d}{d x}\left(x^{2}\right)+4 \frac{d}{d x}(\sqrt{x})-\frac{d}{d x}\left(\frac{1}{x}\right) \\
& =3(2 x)+4\left(\frac{1}{2 \sqrt{x}}\right)-\left(\frac{-1}{x^{2}}\right) \\
& =6 x+\frac{2}{\sqrt{x}}+\frac{1}{x^{2}}
\end{aligned}
$$

1.2 Power Rule

The power rule tells us how to evaluate functions of the form x^{n}, where n is any real number.
Proposition 1.4. Let n be any real number. Then,

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

2 Exercises

Find the derivative of each function below:
a. $f(x)=x^{2}+5-3 x^{-2}$
b. $f(x)=x^{5}-\frac{4}{x^{3}}$
c. $f(x)=\frac{3 x^{2}+4 x-8}{x^{3 / 2}}$
d. $f(x)=\sqrt{x}-6 x^{1 / 3}$

