Calculus with Analytic Geometry

Thomas R. Cameron

January 30, 2024

1 Key Topics

Today, we continue our discussion of the derivative and use its limit definition to derive basic rules for
evaluating the derivative of a function.
Recall that the derivative of a function f is defined by
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provided the above limit exists. If the limit exists for a single value of x, then we say that f is differentiable
at . If the limit exists for all x € [a, b], then we say that f is differentiable on [a, b].

Ezample 1.1. Let f(x) = v/z. Then,
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Note that f/(z) = ﬁ has domain (0, 00). Hence, f(z) = /z is differentiable on (0, 00).

1.1 Basic Derivative Rules

Since the derivative of a function is defined by a limit, we can use the limit properties to derive several basic
rules for evaluating the derivative. When describing these rules, it is convenient to use Leibniz’s notation:
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Proposition 1.2. Let f and g be differentiable at x, and let ¢ denote a constant. Then, the following
properties hold:
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Ezample 1.3. Let f(z) = 32% +4y/x — 1. Then,
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1.2 Power Rule

The power rule tells us how to evaluate functions of the form 2™, where n is any real number.

Proposition 1.4. Let n be any real number. Then,
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2 Exercises

Find the derivative of each function below:
a. f(x) =22 +5— 3272

b. f(x) =a® — %
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d. f(z) =z —6x'/3
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