

# Math 140 Worksheet 3 — Solution Key

## Week 3 (through Wednesday)

1. To be continuous at  $x = 2$ , we need

$$\lim_{x \rightarrow 2^-} F(x) = \lim_{x \rightarrow 2^+} F(x) = F(2) = c.$$

Left limit:  $\lim_{x \rightarrow 2^-} (x^2 - 1) = 2^2 - 1 = 3$ .

Right limit:  $\lim_{x \rightarrow 2^+} (3x - 5) = 3(2) - 5 = 1$ .

Since  $3 \neq 1$ , the two-sided limit does *not* exist, so **no value of  $c$**  can make  $F$  continuous at  $x = 2$ .

2. (a) For  $x \neq 3$ ,

$$r(x) = \frac{(x-3)(x+3)}{x-3} = x+3.$$

(b) As written,  $r$  is not defined at  $x = 3$ , so it is not continuous at  $x = 3$  (it has a removable discontinuity).

(c) Define  $\tilde{r}(3) = 6$  (since  $\lim_{x \rightarrow 3} r(x) = 3 + 3 = 6$ ) and  $\tilde{r}(x) = r(x)$  for  $x \neq 3$ . Then  $\tilde{r}$  is continuous for all real  $x$ .

3. (a)  $p(2) = 8 - 14 + 1 = -5$  and  $p(3) = 27 - 21 + 1 = 7$ . Since  $p(2) < 0 < p(3)$ , there is a root in  $(2, 3)$ .

(b)  $p(x)$  is a polynomial, so it is continuous on  $[2, 3]$ . Thus IVT applies.

4. (a)  $f(0) = \cos 0 - 0 = 1$  and  $f(1) = \cos 1 - 1 \approx 0.5403 - 1 < 0$ . Since  $f$  is continuous on  $[0, 1]$  and changes sign, IVT guarantees a zero in  $(0, 1)$ .

(b) Midpoint is  $m = \frac{1}{2}$ . Compute  $f(\frac{1}{2}) = \cos(\frac{1}{2}) - \frac{1}{2} \approx 0.8776 - 0.5 > 0$ . Since  $f(\frac{1}{2}) > 0$  and  $f(1) < 0$ , the sign change occurs on  $[\frac{1}{2}, 1]$ , so the next interval is  $[\frac{1}{2}, 1]$ .

5. Let  $g(x) = \sin x - \frac{x}{2}$ , continuous on  $[0, \pi]$ . Compute  $g(0) = 0 - 0 = 0$  and  $g(\pi) = 0 - \frac{\pi}{2} < 0$ . Also  $g(\frac{\pi}{2}) = 1 - \frac{\pi}{4} > 0$ . Since  $g(\frac{\pi}{2}) > 0$  and  $g(\pi) < 0$ , by IVT there is a solution in  $(\frac{\pi}{2}, \pi) \subset (0, \pi)$ .