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1 Arc Length
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Let f(x) be a smooth function on [a,b], i.e., f'(x) is continuous
on [a,b]. Let L denote the arc length of f(x ) on [a, b].
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We can approximate L by dividing the interval [a, b] into n subintervals [xg_1, xk]. Over each subinterval,
we approximate the length of the curve by the line connecting the points (xg—_1, f(zr—1)) and (zg, f(xg)).
We denote by Lj the length of the line segment in the kth interval. Using Pythagorean’s theorem, we find
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that

Li = (Aa) + (F(ew) - F(en))?
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where the last equation follows from the mean value theorem. Therefore, we can approximate the arc length

as follows: .
LY A1+ (f(x})* A,
i=1

Taking the limit as n — oo gives us
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L= nh_}rr;oz L+ (f'(z)* Ay = / V1+ f(x)2dx.

Note that, if the curve is expressed as y = , then the arc length formula can be written as
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Similarly, if the curve is expressed as = f(y), then the arc length formula can be written as

2 Surface of Revolution
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Let f(z) denote a smooth function on [a,b]. Consider the surface
of revolution formed by revolving the curve about the z-axis, and /™
let S denote the surface area of this surface of revolution. ’
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To approximate S we split the interval [a,b] into n subintervals. Over each subinterval [xy_1, k], we
approximate the curve y = f(x) via the line segment connecting the points (xg_1, f(xx—1)) and (zk, f(zk)).
When these line segments are revolved about the z-axis, it generates a surface consisting of n parts, each of

which is a portion of a right circular cone.
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The area of each approximating surface is given by

f($k1)+f(wk)> L.
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where Ly denotes the length of the line segment connecting the points (zg—1, f(zx—1)) and (xg, f(xg)).

Recall that
Ly = Axpy/1+ f/(ZCZ)Q,

where z} is in [xgx_1,zx] such that f(xp) — f(zxk—1) = f'(z})Azy, guaranteed by the mean value theorem.
Furthermore, since f(x) is continuous, the intermediate value theorem implies that there exists a z}* in
[*k—1, 2] such that
Jflxp—1) + f(or)
2
Therefore, the surface area S can be approximated via

Smamy  fai )1+ f(a7)? A,
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Taking the limit as n — oo gives us
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S= lim 27y f(x;*)\/1+ f/(2})?Ax; :QW/ f(@)/1+ f(z)2da.
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