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1 Geometric Series
A geometric series can be written as
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where a and r are non-zero. If || > 1, then the series diverges.
Now, consider the partial sum
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Note that s,, — s, = a — ar™!. Therefore,
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Hence, if |r| < 1, then the geometric series converges:
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As an example, consider the series > - 3 - 5~F, which is a geometric series with @ = 3 and r = 1/5.

Therefore,
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As another example, consider the series > p- , 5-37%, which is a geometric series with a = 5/9 and r = 1/3.
We can perform an index shit on this series as follows:
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2 Telescoping Series

A telescoping series can be written in the form
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Hence, the partial sum is given by



for all n > 1. If lim,,_,oo a,, = L, then
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As an example, consider the series Y ;- (% — k%rl) The partial sum is given by
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for all n > 1. Hence,
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As another example, consider the series 2212 ﬁ Applying partial fraction decomposition, we find

that
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So the series can be written as
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Thereofre,
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