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1 Convergence of Sequences

When thinking about the convergence of a sequence it is helpful to view a plot of the sequence over several
positive integers. For example, consider the sequences shown in Figure 1.

Figure 1: The plot of several sequences.

Note that the terms in the sequence { n
n+1} appear to get closer to 1 as n → ∞. In contrast, the terms in

the sequence {(−1)n+1} don’t appear to be getting closer to any single value. These observations motivate
the definition of convergence for a sequence. In particular, the sequence {an} is said to converge to L, which
we denote by limn→∞ an = L, if for all ϵ > 0 there is an N such that |an − L| < ϵ whenever n > N .
Intuitively, ϵ should be viewed as a bound and N should be viewed as a marker. Then, convergence to L
means that all terms past the marker N are within ϵ of L, see Figure 2.

Figure 2: Visualization of convergence definition.

From the visualization in Figure 2, it should be easy to argue why the sequence {(−1)n+1}∞n=1 does not
converge. Indeed, let ϵ = 1. Then, there is no N such that all terms past N have a value within ϵ of any
single value L. In fact, we can see that in order for convergence to occur the odd and even indexed terms of
a sequence must converge to the same value.

To prove convergence, we must be able to identify a marker N for each tolerance ϵ. For example, consider
the sequence { n

n+1}. We want to find a marker N such that∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ < ϵ

for all n > N . To this end, note that
∣∣∣ n
n+1 − 1

∣∣∣ = 1
n+1 . Furthermore, 1

n+1 < ϵ whenever n+ 1 > 1
ϵ . Hence,

we have identified a marker N = 1
ϵ − 1.
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Now, a formal proof of limn→∞
n

n+1 = 1 can be written as follows:

Proof. Let ϵ > 0 and define N = 1
ϵ − 1. Then, n > N implies that n+ 1 > 1

ϵ Therefore, we have∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ = 1

n+ 1
< ϵ.

Complex sequences require more advanced techniques to prove or disprove convergence. For example,
Let f(n) = an denote a sequence and let f(x) denote the extended function over the real numbers. If
limx→∞ f(x) = L, then limn→∞ an = L. Hence, we can apply L’Hoptials rule to determine the convergence
or divergence of sequences. Also, we can use the squeeze theorem to determine the convergence of sequences.
In particular, suppose that an ≤ bn ≤ cn for all n > N , where N is some marker. If an and cn both converge
to L, then bn must also converge to L.

2 Exercises

I. Use the convergence definition to show that

lim
n→∞

(
1 +

(
−1

2

)n)
= 1.

II. Use L’Hoptials rule to show that

lim
n→∞

n

en
= 0.

III. Use the squeeze theorem to show that

lim
n→∞

sin(n)

n
= 0.
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