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1 Convergence of Sequences

When thinking about the convergence of a sequence it is helpful to view a plot of the sequence over several
positive integers. For example, consider the sequences shown in Figure
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Figure 1: The plot of several sequences.

Note that the terms in the sequence {HL_H} appear to get closer to 1 as n — oo. In contrast, the terms in
the sequence {(—1)""1} don’t appear to be getting closer to any single value. These observations motivate
the definition of convergence for a sequence. In particular, the sequence {a, } is said to converge to L, which
we denote by lim,, o a, = L, if for all € > 0 there is an N such that |a, — L| < € whenever n > N.
Intuitively, e should be viewed as a bound and NN should be viewed as a marker. Then, convergence to L
means that all terms past the marker N are within € of L, see Figure
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Figure 2: Visualization of convergence definition.

From the visualization in Figure [2] it should be easy to argue why the sequence {(—1)"*1}2°, does not
converge. Indeed, let ¢ = 1. Then, there is no N such that all terms past N have a value within € of any
single value L. In fact, we can see that in order for convergence to occur the odd and even indexed terms of
a sequence must converge to the same value.

To prove convergence, we must be able to identify a marker N for each tolerance €. For example, consider
the sequence {7} We want to find a marker NV such that
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for all n > N. To this end, note that nL_H - 1‘ = %_H Furthermore, n%_l < € whenever n + 1 > % Hence,

we have identified a marker N = 1 — 1.
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Now, a formal proof of lim,, s =1 can be written as follows:
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Proof. Let € > 0 and define N = % — 1. Then, n > N implies that n +1 > % Therefore, we have
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Complex sequences require more advanced techniques to prove or disprove convergence. For example,
Let f(n) = a, denote a sequence and let f(z) denote the extended function over the real numbers. If
lim, o f(x) = L, then lim,, o, a,, = L. Hence, we can apply L’Hoptials rule to determine the convergence
or divergence of sequences. Also, we can use the squeeze theorem to determine the convergence of sequences.
In particular, suppose that a,, < b, < ¢, for all n > N, where N is some marker. If a,, and ¢, both converge
to L, then b,, must also converge to L.

2 Exercises

I. Use the convergence definition to show that
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II. Use L’Hoptials rule to show that

III. Use the squeeze theorem to show that
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