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1 Polar Coordinates

In polar coordinates, every point in the plane is identified by a radial distance r and angle # measured
counter-clockwise from the positive z-axis. For example, the polar coordinates (r,0) = (2, 7/4) identifies the
point on the circle of radius 2 at 7/4 radians from the positive z-axis. In cartesian coordinates, this point
is x = 2cos(n/4) = v/2 and y = 2sin(r/4) = V2.

In general, the polar coordinate (r,6) corresponds to the cartesian coordinate x = rcos(f) and y =
rsin(f). Moreover, given the cartesian coordinates (x,y) we can identify the polar coordiantes by noting
that

r? = 2% + 9% and tan(d) = %
Note that arctan only returns a radian between —7/2 and 7/2, so we must consider the sign of z and y to
determine the correct angle 6.
We can also graph equations in polar coordinates r and 6. For example, consider the graphs shown in

Figure ]]
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Figure 1: Graphs of basic equations in polar coordinates.

To graph more complicated equations, it is helpful to consider the value of r at varying values of 6 For
example, consider the graphs shown in Figure [2]
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Figure 2: Graphs of more complicated equations in polar coordinates.



Finally, consider the graph of the polar equation r = cos(26) shown in Flgure 3
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Figure 3: Construction of the graph of r = cos(26).

2 Tangent Lines in Polar Coordinates

Consider the function r = f(6), where f is a differentiable function in . In cartesian coordinates, we have
x = f(0)cos(d) and y = f(#)sin(f). Therefore,

For example, if r = sin(f), then
dy  2sin(f) cos(6)
dr  cos?(f) — sin?(6)

Hence, the graph of r = sin(f) has a horizontal tangent line when § = 0 and 6 = 7, and a vertical tangent
line when 6 = /4 and 6 = 57 /4.

3 Area in Polar Coordinates

Consider the function r = f(6), where f is continuous and non-negative over the interval a < 6 < 3. The
region bounded by the graph of f and the radial lines § = « and 6 = 8 is shown in Figure || (left).
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Figure 4: Region bounded by r = f(0), § = «, and 6 = S.
To approximate the area of this region, we subdivide the interval [a, ] into n subintervals
a=0y <0< ---<b,_1<06,=0.
These n subintervals correspond to n sectors of the region as shown in Figure [4| (right). The area of the

kth sector can be approximated by a sector of a circle of radius f(fy+) and central angle Afy, as shown in
Figure [5, which is given by $A0) f (65~ )2.

Therefore, the area of the entire region can be approximated by the following summation
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Figure 5: Region bounded by r = f(#), § = a, and 6 = 3.

Taking the limit as n — oo gives us
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where 0 < 8 — o < 27.
For example, consider r = cos(26). The pedal determined by the interval [—7/4, /4] has area
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