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1 Taylor Series

Let f(z) be infinitely differentiable at zp. Then, the Taylor series of f at xq is given by
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For example, the Taylor series of f(x) = e* at xg = 0 is given by
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This series is an example of a power series centered at 0.
The Taylor series of f(z) =In(z) at g =1 is
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This series is an example of a power series centered at 1.

2 Power Series

Given constants cg, ¢y, o, . . ., the series
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k
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is called a power series centered at xg. Exactly one of the following is true:
a. The power series only converges when x = xg.
b. The power series converges absolutely for all x.

c. The power series converges absolutely for all x in the interval (xg — R,xz9 + R) and diverges for all
|z — zo| > R. If |z — x| = R, then the series may converge or diverge.

The values of x for which the power series converges is known as the interval of convergence.
If the power series is a Taylor series of f(x), then we can use the remainder formula to determine if the
series converges to f(z). Recall that the nth Taylor polynomial satisfies
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Hence, the Taylor series converges to f(x) if and only if

lim f(”“)(t)Mdt =0.
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It is often useful to bound the remainder term as follows
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where | f("TD(t)| < M for all ¢ between x and .
As an example, consider the Taylor series of f(z) = €* at o = 0 given by
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The ratio test implies that the series converges absolutely for all z. Furthermore, given any z, the remainder

is bounded above by
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Gy = 0, it follows that the Taylor series of f(x) =€* at xop = 0 converges to f(x) for all

Since lim,, o €
x.
Next, consider the Taylor series of f(z) = In(x) at zo = 1 given by
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The ratio test implies that the series converges absolutely for all z in the interval (0,2). At = = 0 the series
diverges and at « = 2 the series converges conditionally. Furthermore, given any x in [1, 2], the remainder is

bounded above by
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which goes to zero as n — oco. Also, for any x in (0, 1), the remainder is bounded above by
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which goes to zero as n — co. Therefore, the Taylor series of f(x) = In(z) at o = 1 converges to f(x) for
all z in (0, 2].
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