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1 Antiderivatives

Suppose that f(z) = > p-, ck(x — xo)"* has a positive radius of convergence R > 0. Define
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so the limit of the ratios is the same for the series representing f(z) and F'(z). Therefore, the function F is
defined by the value of an absolutely convergent series. Furthermore, on the interval (zo — R, 29 + R), we
can differentiate F'(x) as follows
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Hence, F(x) is an antiderivative of f(z) on (xg — R,z¢ + R).

2 Definite Integrals

Recall the limit definition of the definite integral
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where the interval [a,b] is partitioned into n subintervals [x;_1,z;], for 1 < i < n, the length of the ith
subinterval is Az;, and 2} is any point in the subinterval. Suppose that f(z) = Y., ck(z — 20)* has a
positive radius of convergence R > 0. Also, suppose that the interval [a,b] is contained in (zg — R, 2o + R).
Then,
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Note that the last equality only holds for absolutely convergent series. Furthermore,
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Therefore,

/b f(z)dz = ki/b cr(x — x0)*da
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We summarize the integral results for power series in the following theorem.

Theorem 2.1. Let f(z) =Y, have a positive radius of convergence R > 0. Then,
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has radius of convergence R and is an antiderivative of f(x) on (x9 — R,xo + R). Furthermore, if [a,b] is a
subset of (xg — R,x0 + R), then

/ab F)de = g/b ex(z — o) da.

As an example, consider the power series representation of the cosine function
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f(x) = cos(z
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Then, we can represent an antiderivative of f(x) as follows
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= sin(z).

Hence, sin(z) is an antiderivative of cos(x).
As another example, consider the following power series
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which has a radius of convergence R = 1 and interval of convergence (1,3). Then, we can integrate f(z)
over [3/2,5/2] as follows
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