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1 Power Series Operations

Last time, we used the power series
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to determine In(1 +z) = >~ (G i 1 - ab for -1 <z <1,andIn(l —z) =Y 7, —1a" for -1 <z < 1.

Furthermore, applying the subtractlon operation gives us

mG“_Lz) —In(1 +2) — In(1 — 7)

B oo ( k+1 oo 1
I S B

k=1
:22]{2_1:5%71, -l<z<l.

E
Il

1
Note that the interval of convergence is the intersection of the interval of convergence for In(1 4+ x) and
In(1 — ).

We also used the power series
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to determine 1+£ =Y peo(=1)kz¥ for —1 <z < 1, and 1+I2 =Y e o(=1DFa?* for —1 < 2 < 1. Regarding

the last interval of convergence, note that 22 < 1 for all =1 < z < 1. Fulrthermore7 applying the integral
operation gives us
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Note that C' = 0 since arctan(0) = 0. Furthermore, the interval of convergence of a power series does not
change under the derivative and integral test. Hence,
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for all =1 < z < 1. In fact, since the given power series converges at x = —1 and x = 1, the continuity of
k+1
arctan(z) implies that arctan(1) = >".7, 2k+1 and arctan(—1) = Y7 211€)+1 .

Finally, we consider the multiplication and division of power series. For instance, consider the rational

function
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Note that
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Therefore, the rational function can be represented as follows
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As an example of division, note that

tan(z) = sin(x)
cos(m)
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Using long division, we find that
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tan(z) =2 + z2° + —a° + —aT +- -
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