Calculus with Analytic Geometry II

Thomas R. Cameron

June 3, 2025

1 Sequences/Series Worksheet

- I. Find function representation of the following sequences. For each sequence, determine whether it converges or diverges. It it converges, find its limiting value and prove it using ϵN definition.
 - a. $\frac{1}{2}$, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$, ...
 - b. 1, 3, 5, 7, ...
 - c. $\frac{1}{3}$, $\frac{2}{5}$, $\frac{3}{7}$, $\frac{4}{9}$, ...
- II. For each series, determine if the sequence of partial sums converges or diverges. If it converges, find its limiting value (you may use L'Hopitals rule).
 - a. $\sum_{k=0}^{\infty} \frac{1}{3^k}$
 - b. $\sum_{k=2}^{\infty} \frac{1}{k^2 1}$
 - c. $\sum_{k=1}^{\infty} \frac{1}{k}$