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1 Geometric Series

A geometric series is of the form
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where a and r are non-zero. Consider the nth partial sum

sp=a+ar+ar®+---+ar" L.

Then, multiplication by r yields
rsp=ar+ar>+ -+ a4+ ar”.

Therefore,
rSp — Sp, = ar” — a.

So, we have

(Tn - 1)7

lim s, = lim
n—o00 n—oo r —

which converges to - if and only if [r| < 1.

As an example, consider the series >~ (75) . This is clearly a geometric series with a = 1 and r = 1/10.

Hence, this series converges to
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2 Telescoping Series

A telescoping series can be written in the form

Z(bk_bk-i-l) :(bl—b2)+(b2—b3)+(b3—b4)+(b4—b5)+"' .
k=1

Note that bs, b3, by, and so on will cancel. Hence, this series converges to b;.
As an example, consider the series

S (b)) (- (1),

which clearly converges to 1. As another example, consider the series
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A partial fraction decomposition to yields
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3 Tests for Divergence

In certain cases, it is easy to identify when a series diverges. In particular, if limy_,o ay # 0, then Y 7o | ay

must diverge. For example, the series > -, k diverges.

However, limy_, ., = 0 is not enough to gurantee convergence. The most famous example is the harmonic

series, 2211 % Consider the following partial sums:
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Therefore, son — Son-1 > 1/2 for all n > 1, which implies that the harmonic series diverges.
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