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1 Taylor Polynomials

Suppose that f(z) is n-times differentiable at x¢. Then the nth Taylor polynomial of f(z) at x¢ is
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For example, let f(z) = e® and x¢p = 0. Then, the n = 1,2,3
Taylor polynomials of f(x) at z¢ are shown below:
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The plot of f(z) (blue), pi(x) (red), pa(a) (green), and pa(a) ST AT ;
(black) are shown on the right. Note that all Taylor polynomials / .

agree with f(x) at xg. Further, the first derivative of all Taylor
polynomials agree with f/(z) at xg. The second derivative of 2
p2(x) agrees with f”(x) at xp and the third derivative of p3(x)
agrees with f"/(z) at xo.

In general we have the following result regarding the value of p,(z) and its derivatives at xg.

Theorem 1.1. Suppose that f(x) is n-times differentiable at xo and let p,(x) denote the nth Taylor poly-
nomial of f(x) at xg. Then,
F® (o) = p (o),

for all0 <k <n.

2 Taylor Polynomial Remainder

We can use the Taylor polynomial to approximate a function. Moreover, we can bound the error in the
Taylor polynomial approximation. To this end, note that
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Applying integration by parts,
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Next, we generalize the integral remainder formula for any n > 1 using induction. Let n > 1 and suppose
that
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Applying integration by parts,
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Therefore, for any n > 1, we have
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Suppose that |f ntD) (¢ )| < M, for all ¢ in the interval [xg,x], then
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As an example, we will use the Taylor series of f(z) = e* at £o = 0 to approximate e to 2-decimal places.
To this end, note that all derivatives of f(z) are bounded above by e on the interval [0, 1]. Hence, the error
bound int he Taylor series approximation is given by
|x‘n+1 e
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for all  in the interval [0,1]. To guarantee 2-decimal places of accuracy, we need CEs)l < 0.005, i.e.,
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Note that 7! = 5040, which is significantly bigger than 500e. Hence, n = 6 is sufficient for our Taylor series
approximation. In conclusion, the approximation of e given by the n = 6th Taylor series approximation of
fl@)=¢e"at xp =0 is
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Which is exact up to the 4th decimal place.
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