Calculus with Analytic Geometry II

Thomas R. Cameron

February 3, 2025

1 Products of Sine and Cosine

If m and n are positive integers, then the integral

$$\int \sin^m(x) \cos^n(x) dx$$

can be evaluated using one of the following rules

n odd	
	• Split off a factor of $\cos(x)$
	• Apply Pythagorean identity
	• Make substitution $u = \cos(x)$
m odd	
	• Split off a factor of $sin(x)$
	• Apply Pythagorean identity
	• Make substitution $u = \sin(x)$
m and n even	
	• Use Pythagorean identity to reduce integrand to only powers of cosine
	• Proceed using reduction formula for powers of cosine

Table 1: Integration rules for products of sine and cosine.

For example, consider the following integral

$$\int \sin^4(x) \cos^5(x) dx = \int \sin^4(x) \cos^4(x) \cos(x) dx$$

= $\int \sin^4(x) (1 - \sin^2(x))^2 \cos(x) dx$
= $\int u^4 (1 - u^2)^2 du$ ($u = \sin(x)$)
= $\int u^4 (1 - 2u^2 + u^4) du$
= $\int (u^4 - 2u^6 + u^8) du$
= $\frac{1}{5}u^5 - \frac{2}{7}u^7 + \frac{1}{9}u^9 + C$
= $\frac{1}{5}\sin^5(x) - \frac{2}{7}\sin^7(x) + \frac{1}{9}\sin^9(x) + C.$

Note that if either m or n is odd, then the above strategy will work. For instance, in the following example the power of Cosine is odd but the power on Sine is -1/2:

$$\int \frac{\cos^3(x)}{\sqrt{\sin(x)}} dx = \int \frac{\cos^2(x)}{\sqrt{\sin(x)}} \cos(x) dx$$

= $\int \frac{(1 - \sin^2(x))}{\sqrt{\sin(x)}} \cos(x) dx$
= $\int \left(\sin^{-1/2}(x) - \sin^{3/2}(x)\right) \cos(x) dx$
= $\int \left(u^{-1/2} - u^{3/2}\right) du$ $(u = \sin(x))$
= $2u^{1/2} - \frac{2}{5}u^{5/2} + C$
= $2\sin^{1/2}(x) - \frac{2}{5}\sin^{5/2}(x) + C.$

Before proceeding, we note that integrals involving the products of sines and cosines of two angles can be simplified using the angle sum and difference identities.

2 Products of Tangent and Secant

If m and n are positive integers, then the integral

$$\int \tan^m(x) \sec^n(x) dx$$

can be evaluated using one of the following rules

n even	
	• Split off a factor of $\sec^2(x)$
	• Apply Pythagorean identity
	• Make substitution $u = \tan(x)$
$m \operatorname{odd}$	
	• Split off a factor of $\sec(x)\tan(x)$
	• Apply Pythagorean identity
	• Make substitution $u = \sec(x)$
m even and n odd	
	• Use Pythagorean identity to reduce integrand to only powers o secant
	• Proceed using reduction formula for powers of secant

Table 2: Integration rules for products of tangent and secant.

3 Exercises

- 1. Evaluate the integral $\int \sin^4(x) \cos^4(x) dx$.
- 2. Evaluate the integral $\int \tan^2(x) \sec^4(x) dx$.
- 3. Evaluate the integral $\int \tan^2(x) \sec(x) dx$.