Volumes by Shells

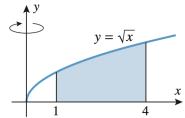
Thomas R. Cameron

September 5, 2025

1 Shell Method

Sometimes the method of disks and washers is not the most efficient way to find the volume of a solid of revolution.

For example, consider the solid of revolution formed by taking the plane region bounded by $y=\sqrt{x},\ x=1,\ x=4,$ and the x-axis, and revolving that region around the y-axis. Note that each cross section is a washer; however, the inner radius of the washer is x=1, for $0\leq y\leq 1$, and is $x=y^2$, for $1\leq y\leq 2$. Hence, to find the volume of the solid of revolution using the washer method we need two integrals.



The shell method uses cyclindrical shells to approximate the volume of a solid of revolution. A cyclindrical shell is a solid enclosed by two circular cylinders. If the outer cylinder has radius r_2 and the inner cylinder has radius r_1 , then the volume of the shell is given by

$$V = \pi \left(r_2^2 - r_1^2\right) h$$

= $\pi (r_2 + r_1)(r_2 - r_1) h$
= $2\pi \left(\frac{r_1 + r_2}{2}\right) (r_2 - r_1) h$.

Now, divide the interval [a,b] into n subintervals $[x_{i-1},x_i]$, for $1 \le i \le n$, each of length Δx_i . Then, the plane region has been divided into n strips, which we denote by R_1, R_2, \ldots, R_n . When revolved around the y-axis, these strips generate tube-like solids S_1, S_2, \ldots, S_n that are nested one inside the other, see Figure 1.

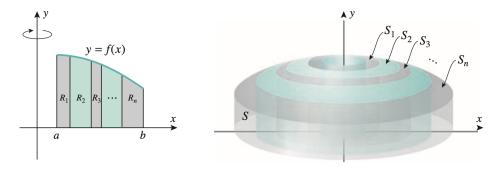


Figure 1: Shell Method, split the region into n strips and revolve around y-axis

Note that these strips have curved upper bounds. However, if the strips are thin we can approximate their area using a rectangle. These rectangles, when revolved around the y-axis, will produce cylindrical shells whose volume closely approximate the volume of the tubes, see Figure 2.

To implement the shell method, consider the subinterval $[x_{k-1}, x_k]$ and let x_k^* denote the midpoint of this interval. If we construct a rectangle of height $f(x_k^*)$ over this interval, then revolving the rectangle around

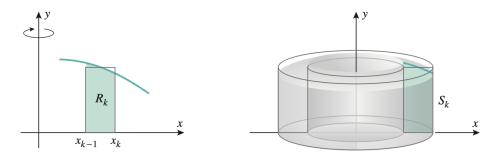


Figure 2: Shell Method, approximate the area of each strip by a rectangle and revolve around y-axis

the y-axis will produce a cylindrical shell of average radius x_k^* , height $f(x_k^*)$, and thickness Δx_k . Hence, the volume of this shell is given by

$$V_k = 2\pi x_k^* f(x_k^*) \Delta x_k.$$

Therefore, we can approximate the volume of the solid of revolution as follows

$$V \approx 2\pi \sum_{i=1}^{n} x_i^* f(x_i^*) \Delta x_i.$$

Taking the limit as $n \to \infty$ gives us

$$V = 2\pi \lim_{n \to \infty} \sum_{i=1}^{n} x_i^* f(x_i^*) \Delta x = 2\pi \int_a^b x f(x) dx.$$