Differential Equations

Thomas R. Cameron

October 11, 2023

1 Daily Quiz

Find a fundamental set of solutions to the homogeneous differential equation:

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}=0 .
$$

2 Key Topics

Today, we review for Exam 2, which will cover the theory of second-order linear differential equations, the characteristic equation, the method of undetermined coefficients, and the method of variation of parameters.

2.1 Theory of Second-Order Linear Differential Equations

Every second-order linear differential equation can be written in the following form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

You should be able to answer the following questions.

- When is a solution guaranteed to exist?
- When is the solution unique?
- What is a fundamental set of solutions?
- Give two formulas for the Wronskian. What is the importance of each?
- What is a particular solution?
- What is a general solution?

2.2 Characteristic Equation

Find a fundamental set of solutions to each of the homogeneous differential equations:
I. $y^{\prime \prime}+5 y^{\prime}+6 y=0$
II. $y^{\prime \prime}+4 y^{\prime}+4 y=0$
III. $y^{\prime \prime}+3 y^{\prime}+4 y=0$

2.3 Undetermined Coefficients

Find a particular solution to each of the non-homogeneous differential equations:
I. $y^{\prime \prime}+5 y^{\prime}+6 y=3 e^{-2 t}$
II. $y^{\prime \prime}+4 y^{\prime}+4 y=5 t+3$

2.4 Variation of Parameters

Find a particular solution of the non-homogeneous differential equation:

$$
y^{\prime \prime}+3 y^{\prime}+4 y=\frac{\sec \left(\frac{\sqrt{7}}{2} t\right)}{e^{3 t / 2}}
$$

3 Exercises

