Differential Equations

Thomas R. Cameron

October 17, 2023

1 Daily Quiz

Find $\mathcal{L}(\cosh (a t))$.

2 Key Topics

Today, we continue to compute the Laplace transform and we discuss the inverse Laplace transform. For further reading, see [1, Sections 8.1-8.2].

2.1 The Laplace Transform

Example 2.1.

$$
\begin{aligned}
\mathcal{L}(\cos (a t)) & =\int_{0}^{\infty} e^{-s t} \cos (a t) d t \\
& =\left.\frac{1}{a} e^{-s t} \sin (a t)\right|_{0} ^{\infty}+\frac{s}{a} \int_{0}^{\infty} e^{-s t} \sin (a t) d t \\
& =\left.\frac{1}{a} e^{-s t} \sin (a t)\right|_{0} ^{\infty}+\frac{s}{a}\left(-\left.\frac{1}{a} e^{-s t} \cos (a t)\right|_{0} ^{\infty}-\frac{s}{a} \int_{0}^{\infty} e^{-s t} \cos (a t) d t\right) \\
& =\left.\frac{1}{a} e^{-s t} \sin (a t)\right|_{0} ^{\infty}-\left.\frac{s}{a^{2}} e^{-s t} \cos (a t)\right|_{0} ^{\infty}-\frac{s^{2}}{a^{2}} \int_{0}^{\infty} e^{-s t} \cos (a t) d t
\end{aligned}
$$

Note that

$$
\left(\frac{a^{2}+s^{2}}{a^{2}}\right) \int_{0}^{\infty} e^{-s t} \cos (a t) d t=\left.\frac{1}{a} e^{-s t} \sin (a t)\right|_{0} ^{\infty}-\left.\frac{s}{a^{2}} e^{-s t} \cos (a t)\right|_{0} ^{\infty}=\frac{s}{a^{2}} .
$$

Therefore,

$$
\mathcal{L}(\cos (a t))=\frac{s}{a^{2}+s^{2}}
$$

In Table 1, we give a partial table of Laplace transforms. While many more transforms could be added, this table will suffice for now.

$f(t)$	$F(s)=\mathcal{L}(f(t))$
1	$\frac{1}{s}$
t	$\frac{1}{s^{2}}$
$\cos (\omega t)$	$\frac{s}{\omega^{2}+s^{2}}$
$\sin (\omega t)$	$\frac{\omega}{\omega^{2}+s^{2}}$
$\cosh (\omega t)$	$\frac{s}{s^{2}-w^{2}}$
$\sinh (\omega t)$	$\frac{w}{s^{2}-w^{2}}$
$e^{a t} f(t)$	$F(s-a)$

Table 1: Laplace Transforms

2.2 The Inverse Laplace Transform

Give $F(s)$, the inverse Laplace transform is defined by

$$
f(t)=\mathcal{L}^{-1}(F(s))
$$

While there is a formula for finding the inverse Laplace transform, it requires theory of complex integration that is outside the scope of our course. We will simplify matters by using Table 1 to determine the inverse Laplace transform.
Example 2.2. Let $F(s)=\frac{1}{s^{2}-1}$. Setting $\omega=1$ shows that

$$
F(s)=\mathcal{L}(\sinh (\omega t)) .
$$

Hence, $f(t)=\mathcal{L}^{-1}(F(s))=\sinh (t)$.
Let $F(s)=\frac{s}{s^{2}+9}$. Setting $\omega=3$ shows that

$$
F(s)=\mathcal{L}(\cos (\omega t)) .
$$

Hence, $f(t)=\mathcal{L}^{-1}(F(s))=\cos (3 t)$.
Proposition 2.3. If F_{1}, \ldots, F_{n} are Laplace transforms and c_{1}, \ldots, c_{n} are constants. Then,

$$
\mathcal{L}^{-1}\left(c_{1} F_{1}+\cdots+c_{n} F_{n}\right)=c_{1} \mathcal{L}^{-1}\left(F_{1}\right)+\cdots+c_{n} \mathcal{L}^{-1}\left(F_{n}\right) .
$$

3 Exercises

I. Complete the square and apply Proposition 2.3 to find the inverse Laplace transform of

$$
F(s)=\frac{3 s+8}{s^{2}+2 s+5} .
$$

II. Use partial fraction decomposition and Proposition 2.3 to find the inverse Laplace transform of

$$
F(s)=\frac{3 s+2}{s^{2}-3 s+2}
$$

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

