Differential Equations

Thomas R. Cameron

October 18, 2023

1 Daily Quiz

Find

$$
\mathcal{L}^{-1}\left(\frac{2 s+1}{s^{2}+9}\right)
$$

2 Key Topics

Today, we show how the Laplace transform can be used to solve initial value problems of the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=f(t), y(0)=y_{0}, y(0)=y_{0}^{\prime} \tag{1}
\end{equation*}
$$

For further reading, see [1, Section 6.2] and [2, Section 8.3].

2.1 Laplace Transform of the Derivative

First, we must define the Laplace transform of the derivative. Recall that $y(t)$ is exponentially bounded if

$$
|y(t)| \leq M e^{a t}, t \geq t_{0}
$$

for some constants M, a, t_{0}.
Proposition 2.1. Suppose that $y(t)$ is continuous and $y^{\prime}(t)$ is piecewise continuous. If $y(t)$ is exponentially bounded, then the Laplace transform of $y^{\prime}(t)$ exists for $s>a$ and

$$
\mathcal{L}\left(y^{\prime}\right)=s \mathcal{L}(y)-y(0)=s Y(s)-y(0)
$$

where $Y(s)$ is the Laplace transform of $y(t)$.
Proof. Note that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =\int_{0}^{\infty} e^{-s t} y^{\prime}(t) d t \\
& =\left.e^{-s t} y(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} y(t) d t \\
& =s \mathcal{L}(y)-y(0)
\end{aligned}
$$

Proposition 2.2. Suppose that $y(t)$ and $y^{\prime}(t)$ are continuous and $y^{\prime \prime}(t)$ is piecewise continuous. If $y(t)$ and $y^{\prime}(t)$ are exponentially bonded, then the Laplace transform of $y^{\prime \prime}(t)$ exists for $s>a$ and

$$
\mathcal{L}\left(y^{\prime \prime}\right)=s^{2} \mathcal{L}(y)-s y(0)-y^{\prime}(0)=s^{2} Y(s)-s y(0)-y^{\prime}(0)
$$

where $Y(s)$ is the Laplace transform of $y(t)$.

Proof. Note that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime \prime}\right) & =\int_{0}^{\infty} e^{-s t} y^{\prime \prime}(t) d t \\
& =\left.e^{-s t} y^{\prime}(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} y^{\prime}(t) d t \\
& =\left.e^{-s t} y^{\prime}(t)\right|_{0} ^{\infty}+s(s \mathcal{L}(y)-y(0)) \\
& =s^{2} \mathcal{L}(y)-s y(0)-y^{\prime}(0)
\end{aligned}
$$

2.2 Laplace Transform of the IVP

Theorem 2.3. Suppose that the Laplace transform of $y, y^{\prime}, y^{\prime \prime}, f$ exist. Then, the Laplace transform of (1) exists and can be written as

$$
Y(s)\left(a s^{2}+b s+c\right)=F(s)+(a s+b) y(0)+a y^{\prime}(0)
$$

3 Exercises

Consider the initial value problem

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{3 t}, y(0)=1, y^{\prime}(0)=1
$$

I. Solve the initial value problem using the characteristic equation and the method of undetermined coefficients.
II. Solve the initial value problem using the Laplace transform.

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

