Differential Equations

Thomas R. Cameron

October 2, 2023

1 Daily Quiz

Find the formula for u_{1}^{\prime} and u_{2}^{\prime} in variation of parameters applied to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{1+e^{t}} .
$$

2 Key Topics

Today we continue to use the method of variation of parameters to find a particular solution of the secondorder linear non-homogeneous differential equation:

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t) \tag{1}
\end{equation*}
$$

where $y:=y(t)$ is a differentiable function. For further reading, see [2, Section 5.7] or [1, Section 4.2].

2.1 Variation of Parameters

Let $\left\{y_{1}, y_{2}\right\}$ form a fundamental set for the complementary homogeneous equation of (1). We seek a particular of the form

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2} \tag{2}
\end{equation*}
$$

where $u_{1}:=u_{1}(t)$ and $u_{2}:=u_{2}(t)$ are differentiable functions. Recall that we derived the following formulas for the derivative of u_{1} and u_{2} :

$$
\begin{aligned}
u_{1}^{\prime} & =-\frac{y_{2} f(t)}{W\left(y_{1}, y_{2}\right)} \\
u_{2}^{\prime} & =\frac{y_{1} f(t)}{W\left(y_{1}, y_{2}\right)}
\end{aligned}
$$

3 Exercises

Find the general solution for each of the following differential equations. Note that in some cases it may be wise to use the method of undetermined coefficients.
I. $y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{1+e^{t}}$
II. $y^{\prime \prime}-5 y^{\prime}+6 y=3 t e^{t}$
III. $y^{\prime \prime}+y=\csc (t)$
IV. $y^{\prime \prime}-4 y^{\prime}=4 t+3$

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

