Differential Equations

Thomas R. Cameron

October 31, 2023

1 Daily Quiz

Find the Taylor series of

$$
f(x)=\frac{1}{1-x}
$$

2 Key Topics

Today, we continue our review of power series:

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{1}
\end{equation*}
$$

where $x_{0}, a_{0}, a_{1}, \ldots, a_{n}, \ldots$ are constants. In particular, we will discuss differentiation of power series and the shifting of the index. For further reading, see [1, Sections 7.1].

2.1 Differentiation

Theorem 2.1. Suppose the power series (1) has radius of convergence $R>0$. Then, all derivatives of the power series exist in the open interval centered at x_{0} with radius R. Furthermore, the derivatives can be attained with term by term differentiation.

Example 2.2. Let $f(x)=\sin (x)$. Then,

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
f^{\prime}(x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=\cos (x)
\end{aligned}
$$

Theorem 2.3. Suppose that the power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

has a positive radius of convergence, i.e., $R>0$. Then,

$$
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

i.e., $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is the Taylor series of f at x_{0}.

Proof. Note that

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \\
& =a_{0}+\sum_{n=1}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

so $f\left(x_{0}\right)=a_{0}$. Next, note that

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=0}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \\
& =0+a_{1}+\sum_{n=1}^{\infty}(n+1) a_{n+1}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

so $a_{1}=f^{\prime}\left(x_{0}\right)$. Next, note that

$$
\begin{aligned}
f^{\prime \prime}(x) & =\sum_{n=0}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2} \\
& =0+0+2 a_{2}+\sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

so $a_{2}=f^{\prime \prime}\left(x_{0}\right) / 2$. In general, we see that the coefficients of the power series are uniquely defined by the formula

$$
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

Theorem 2.3 implies that if a power series has a positive radius of convergence, then the series is a unique.

2.2 Shifting Index

There several occasions during the proof of Theorem 2.3 where we shifted the index of the power series. For example,

$$
\sum_{n=2}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}=\sum_{n=1}^{\infty}(n+1) a_{n+1}\left(x-x_{0}\right)^{n}
$$

is obtained from the shift $n=n+1$. Similarly,

$$
\sum_{n=3}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2}=\sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2}\left(x-x_{0}\right)^{n}
$$

is obtained from the shift $n=n+2$.
Shifting the series index is very useful when combining multiple series. For example,

$$
\begin{aligned}
\sum_{n=0}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left[(n+1) a_{n+1}+a_{n}\right] x^{n}
\end{aligned}
$$

3 Exercises

Suppose that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has a positive radius of convergence. Identify the coefficients $a_{0}, a_{1}, a_{2}, \ldots$ that satisfy $f^{\prime}(x)=f(x)$.

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

