Differential Equations

Thomas R. Cameron

October 3, 2023

1 Daily Quiz

Find the formula for u_{1}^{\prime} and u_{2}^{\prime} in variation of parameters applied to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{1+e^{t}}
$$

2 Key Topics

Today, we revisit applications of second-order differential equations to the study of harmonics. For further reading, see [2, Section 6.2] or [1, Section 4.3].

2.1 Mass Spring System

Consider the mass spring system shown in Figure 2.1. winch shows a mass m connected to a wall via a spring with spring constant k.

Assuming the mass is sliding on a surface with a friction coefficient b, the following differential equation describes the displacement from equilibrium of the mass:

$$
m y^{\prime \prime}+b y^{\prime}+k y=f(t),
$$

where $f(t)$ is an external forcing function.
Example 2.1. Consider the differential equation

$$
y^{\prime \prime}+6 y^{\prime}+5 y=\sin (2 t)
$$

A fundamental set of solutions to the homogeneous equation is given by

$$
y_{1}=e^{-t}, y_{2}=e^{-5 t}
$$

A particular solution will be of the form

$$
y_{p}=A \cos (2 t)+B \sin (2 t) .
$$

Plugging y_{p} into the differential equation gives

$$
\begin{aligned}
y_{p}^{\prime \prime}+6 y_{p}^{\prime}+5 y_{p} & =(-4 A \cos (2 t)-4 B \sin (2 t))+6(-2 A \sin (2 t)+2 B \cos (2 t))+5(A \cos (2 t)+B \sin (2 t)) \\
& =\cos (2 t)(A+12 B)+\sin (2 t)(B-12 A)
\end{aligned}
$$

Therefore, A and B must satisfy

$$
\begin{array}{r}
A+12 B=0 \\
-12 A+B=1
\end{array}
$$

which implies that $B=1 / 145$ and $A=-12 / 145$. Therefore, the general solution is given by

$$
y=-\frac{12}{145} \cos (2 t)+\frac{1}{145} \sin (2 t)+c_{1} e^{-t}+c_{2} e^{-5 t}
$$

2.2 Amplitude, Frequency, and Phase Shift

In Example 2.1. note that the general solution approaches the particular solution as $t \rightarrow \infty$. For this reason, we would like to rewrite the particular solution in the following form

$$
y_{p}(t)=R \cos (\omega t-\phi)
$$

where R denotes the amplitude, ω the frequency, and ϕ the phase shift of the particular solution.
To this end, note that

$$
R \cos (\omega t-\phi)=R \cos (\phi) \cos (\omega t)+R \sin (\phi) \sin (\omega t)
$$

Hence, by comparing the above form to

$$
A \cos (\omega t)+B \sin (\omega t)
$$

we see that

$$
A^{2}+B^{2}=R^{2}
$$

and

$$
A=R \cos (\phi), B=R \sin (\phi)
$$

Example 2.2. We will rewrite the particular solution from Example 2.1 in the following form

$$
y_{p}(t)=R \cos (\omega t-\phi)
$$

To this end, note that

$$
R^{2}=\left(-\frac{12}{145}\right)^{2}+\left(\frac{1}{145}\right)^{2}=\frac{1}{145}
$$

so $R=145^{-1 / 2}$. Furthermore,

$$
\tan (\phi)=-\frac{1}{12}
$$

where ϕ must be chosen to be in the second quadrant since cosine is negative and sine is positive. so $\phi=\arctan (-1 / 12)+\pi \approx 3.058$. Therefore, our particular solution is of the form

$$
y_{p}(t)=\frac{1}{\sqrt{145}} \cos (2 t-\phi) \approx \frac{1}{\sqrt{145}} \cos (2 t-3.058)
$$

3 Exercises

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

