Differential Equations

Thomas R. Cameron

October 4, 2023

1 Daily Quiz

Find the formula for u_{1}^{\prime} and u_{2}^{\prime} in variation of parameters applied to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{1+e^{t}}
$$

2 Key Topics

Today, we begin our discussion of linear high-order differential equations:

$$
\begin{equation*}
y^{(n)}+p_{1}(t) y^{(n-1)}+\cdots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=f(t) \tag{1}
\end{equation*}
$$

For further reading, see [1, Section 9.1].

2.1 Existence and Uniqueness

Theorem 2.1. Suppose that $f(t)$ and $p_{i}(t), 1 \leq i \leq n$ are continuous on the interval (a, b). Then, the differential equation in (1) has a unique solution on (a, b) that satisfies the initial values

$$
y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}, \cdots, y^{(n-1)}\left(t_{0}\right)=y_{0}^{(n-1)}
$$

where $t_{0} \in(a, b)$, and $y_{0}, y_{0}^{\prime}, \cdots, y_{0}^{(n-1)} \in \mathbb{R}$.
Theorem 2.2. Let $y_{1}, y_{2}, \ldots, y_{n}$ be solutions to the complementary homogeneous differential equation, i.e., where $f(t)=0$. Then, for any constants $c_{1}, c_{2}, \ldots, c_{n}$,

$$
y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}
$$

is also a solution of the homogeneous differential equation.
Proof. Note that the k th derivative of y can be written as

$$
\begin{aligned}
y^{(k)} & =c_{1} y_{1}^{(k)}+\cdots+c_{n} y_{n}^{(k)} \\
& =\sum_{i=1}^{n} c_{i} y_{i}^{(k)}
\end{aligned}
$$

Therefore, plugging y into the differential equation in (1) gives

$$
\begin{aligned}
& \sum_{i=1}^{n} c_{i} y_{i}^{(n)}+p_{1}(t) \sum_{i=1}^{n} c_{i} y_{i}^{(n-1)}+\cdots+p_{n-1}(t) \sum_{i=1}^{n} c_{i} y_{i}^{\prime}+p_{n}(t) \sum_{i=1}^{n} c_{i} y_{i} \\
& =c_{1}\left(y_{1}^{(n)}+p_{1}(t) y_{1}^{(n-1)}+\cdots+p_{n-1}(t) y_{1}^{\prime}+p_{n}(t) y_{1}\right) \\
& +\cdots \\
& +c_{n}\left(y_{n}^{(n)}+p_{1}(t) y_{n}^{(n-1)}+\cdots+p_{n-1}(t) y_{n}^{\prime}+p_{n}(t) y_{n}\right) \\
& =0+0+\cdots+0=0
\end{aligned}
$$

We say that $\left\{y_{1}, \ldots, y_{n}\right\}$ forms a fundamental set of solutions to the complementary homogeneous differential equation if every solution to the homogeneous differential equation can be written in the form

$$
\begin{equation*}
y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n} \tag{2}
\end{equation*}
$$

for some constants $c_{1}, c_{2}, \ldots, c_{n}$.
Let $y(t)$ be the unique solution guaranteed by Theorem 2.1. Then, $y(t)$ can be written in the form of 2 if and only if the following system of equations has a unique solution:

$$
\begin{align*}
c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)+\cdots+c_{n} y_{n}\left(t_{0}\right) & =y_{0} \\
c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)+\cdots+c_{n} y_{n}^{\prime}\left(t_{0}\right) & =y_{0}^{\prime} \\
& \vdots \tag{3}\\
c_{1} y_{1}^{(n-1)}\left(t_{0}\right)+c_{2} y_{2}^{(n-1)}\left(t_{0}\right)+\cdots+c_{n} y_{n}^{(n-1)}\left(t_{0}\right) & =y_{0}^{(n-1)}
\end{align*}
$$

The system of equations in (3) has a unique solution if and only if

$$
\left|\begin{array}{cccc}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) & \cdots & y_{n}\left(t_{0}\right) \tag{4}\\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right) & \cdots & y_{n}^{\prime}\left(t_{0}\right) \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)}\left(t_{0}\right) & y_{2}^{(n-1)}\left(t_{0}\right) & \cdots & y_{n}^{(n-1)}\left(t_{0}\right)
\end{array}\right| \neq 0
$$

Therefore, the solutions $y_{i}, 1 \leq i \leq n$ to the complementary homogeneous differential equation form a fundamental set if and only if (4) holds for all $t_{0} \in(a, b)$.

We define the Wronskian of $\left\{y_{1}, \ldots, y_{n}\right\}$ as follows

$$
W\left(y_{1}, \ldots, y_{n}\right)=\left|\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \tag{5}\\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right|
$$

It is important to note that the Wronskian can also be written as

$$
\begin{equation*}
W\left(y_{1}, \ldots, y_{n}\right)=C e^{-\int p_{1}(t) d t} \tag{6}
\end{equation*}
$$

for some constant C. Hence, the Wornskian is either always zero or never zero.
We summarize these results in the following theorem.
Theorem 2.3. Suppose that $p_{i}(t), 1 \leq i \leq n$, are continuous on (a, b). Then, the homogeneous solutions $y_{i}, 1 \leq i \leq n$, form a fundamental set on (a, b) if and only if the Wronskian $W\left(y_{1}, \ldots, y_{n}\right) \neq 0$.

3 Exercises

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

