Differential Equations

Thomas R. Cameron

October 6, 2023

1 Daily Quiz

Show that $y=e^{t}$ is a solution of the homogeneous differential equation:

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

2 Key Topics

Today, we form the fundamental set of solutions to the homogeneous constant coefficient differential equation:

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0 \tag{1}
\end{equation*}
$$

where $a_{n} \neq 0$. For further reading, see [1] Section 9.2].

2.1 Characteristic Equation

We begin by seeking solutions to (1) of the form $y=e^{r t}$. Plugging into the differential equation gives

$$
\begin{aligned}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y & =a_{n} r^{n} e^{r t}+a_{n-1} r^{n-1} e^{r t}+\cdots+a_{1} r e^{r t}+a_{0} e^{r t} \\
& =e^{r t}\left(a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}\right) .
\end{aligned}
$$

Hence $y=e^{r t}$ is a solution to (11) if and only if

$$
\begin{equation*}
a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}=0 \tag{2}
\end{equation*}
$$

We reference (2) as the characteristic equation of (1).
Suppose that r_{1}, \ldots, r_{n} are distinct roots of the characteristic equation, then the following functions

$$
\begin{equation*}
y_{1}=e^{r_{1} t}, y_{2}=e^{r_{2} t}, \ldots, y_{k}=e^{r_{n} t} \tag{3}
\end{equation*}
$$

form a fundamental set of solutions.
All complex roots of the characteristic equation must come in complex conjugate pairs

$$
r=w \pm z i .
$$

The corresponding solutions can be written in the form

$$
\begin{equation*}
y_{1}=e^{w t} \cos (z t), y_{2}=e^{w t} \sin (z t) \tag{4}
\end{equation*}
$$

Suppose that r is a repeated root of the characteristic equation, with multiplicity m. Then, the corresponding solutions can be written in the form

$$
\begin{equation*}
y_{1}=e^{r t}, y_{2}=t e^{r t}, \ldots, y_{m}=t^{m-1} e^{r t} . \tag{5}
\end{equation*}
$$

2.2 The Wronskian

To establish that we have a fundamental set of solutions, we must prove that the Wronskian is non-zero. We will demonstrate that this is the case through several examples.
Example 2.1. Consider the homogeneous differential equation

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

The characteristic equation can be written as follows

$$
r^{3}-2 r^{2}-5 r+6=(r-1)(r+2)(r-3)=0
$$

Hence, we have the following fundamental set of solutions:

$$
y_{1}=e^{-2 t}, y_{2}=e^{t}, y_{3}=e^{3 t}
$$

We can verify that $\left\{y_{1}, y_{2}, y_{3}\right\}$ is a fundamental set by showing that the Wronskian is non-zero. Since the Wronskian is either always zero or never zero, we will evaluate the Wronskian at $t=0$:

$$
\begin{aligned}
W(0) & =\left|\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & 3 \\
4 & 1 & 9
\end{array}\right| \quad\left(2 r_{1}+r_{2},-4 r_{1}+r_{3}\right) \\
& =\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 3 & 5 \\
0 & -3 & 5
\end{array}\right| \quad\left(r_{2}+r_{3}\right) \\
& =\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 3 & 5 \\
0 & 0 & 10
\end{array}\right|=30
\end{aligned}
$$

Note that we are using Gaussian elimination to reduce the 3×3 matrix to an upper triangular form at which point the determinant is equal to the product of the diagonal entries.
Example 2.2. Consider the homogeneous differential equation

$$
y^{(5)}-y^{(4)}-y^{\prime}+y=0
$$

The characteristic equation can be written as follows

$$
r^{5}-r^{4}-r+1=(r+1)(r-1)^{2}\left(r^{2}+1\right)=0
$$

Hence, we have the following set of fundamental solutions:

$$
y_{1}=e^{-t}, y_{2}=e^{t}, t_{3}=t e^{t}, y_{4}=\cos (t), y_{5}=\sin (t)
$$

Again, we evaluate the Wronskian $t=0$:

$$
\begin{aligned}
W(0) & =\left|\begin{array}{ccccc}
1 & 1 & 0 & 1 & 0 \\
-1 & 1 & 1 & 0 & 1 \\
1 & 1 & 2 & -1 & 0 \\
-1 & 1 & 3 & 0 & -1 \\
1 & 1 & 4 & 1 & 0
\end{array}\right| \quad\left(r_{1}+r_{2},-r_{1}+r_{3}, r_{1}+r_{4},-r_{1}+r_{5}\right) \\
& =\left|\begin{array}{ccccc}
1 & 1 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 2 & -2 & 0 \\
0 & 2 & 3 & 1 & -1 \\
0 & 0 & 4 & 0 & 0
\end{array}\right| \quad\left(-r_{2}+r_{4}\right) \\
& =\left|\begin{array}{ccccc}
1 & 1 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 2 & -2 & 0 \\
0 & 0 & 2 & 0 & -2 \\
0 & 0 & 4 & 0 & 0
\end{array}\right| \quad\left(-r_{3}+r_{4},-2 r_{3}+r_{5}\right) \\
& =\left|\begin{array}{ccccc}
1 & 1 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 2 & -2 & 0 \\
0 & 0 & 0 & 2 & -2 \\
0 & 0 & 0 & 4 & 0
\end{array}\right|\left(-2 r_{4}+r_{5}\right) \\
& =\left|\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 2 & -2 & 0 \\
0 & 0 & 0 & 2 & -2 \\
0 & 0 & 0 & 0 & 4
\end{array}\right|=32 .
\end{aligned}
$$

3 Exercises

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

