Differential Equations

Thomas R. Cameron

October 9, 2023

1 Daily Quiz

Find a fundamental set of solutions to the homogeneous differential equation:

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+4 y^{\prime}+2 y=0,
$$

given that the characteristic equation can be factored as follows:

$$
r^{3}+3 r^{2}+4 r+2=(r+1)\left(r^{2}+2 r+2\right) .
$$

2 Key Topics

Today, we discuss the method of undetermined coefficients for finding a particular solution a higher-order non-homogeneous differential equation of the form:

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(t) . \tag{1}
\end{equation*}
$$

where $a_{n} \neq 0$. For further reading, see [1, Section 9.3].

2.1 Undetermined Coefficients

As with second-order differential equations, the method of undetermined coefficients can only be applied to an $f(t)$ of a form in the following table.

$f(t)$	$y_{p}(t)$
$\sum_{i=0}^{n} a_{i} t^{i}$	$\sum_{i=0}^{n} A_{i} t^{i}$
$\left(\sum_{i=0}^{n} a_{i} t^{i}\right) e^{a t}$	$\left(\sum_{i=0}^{n} A_{i} t^{i}\right) e^{a t}$
$\left(\sum_{i=0}^{n} a_{i} t^{i} e^{a t} e^{a t} \cos (b t)\right.$	$\left(\sum_{i=0}^{n} A_{i} t^{i}\right) e^{a t} \cos (b t)+\left(\sum_{i=0}^{n} B_{i} t^{i}\right) e^{a t} \sin (b t)$
$\left(\sum_{i=0}^{n} a_{i} t^{i}\right) e^{a t} \sin (b t)$	$\left(\sum_{i=0}^{n} A_{i} t^{i}\right) e^{a t} \cos (b t)+\left(\sum_{i=0}^{n} B_{i} t^{i}\right) e^{a t} \sin (b t)$

3 Exercises

Find the general solution for each of the following non-homogeneous differential equations.
I. $y^{\prime \prime \prime}+3 y^{\prime \prime}+4 y^{\prime}+2 y=3 t^{2}+4 t+1$
II. $y^{\prime \prime \prime}+3 y^{\prime \prime}+4 y^{\prime}+2 y=3 e^{t}+4 \cos (t)$
III. $y^{\prime \prime \prime}+3 y^{\prime \prime}+4 y^{\prime}+2 y=e^{-t}$

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

