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1 Daily Quiz

2 Key Topics

Today, we give examples on how power series can be used to solve differential equations. For further reading,
see [II, Sections 7.2].

2.1 Examples
Ezxample 2.1. Consider the differential equation
y —y=0,

and assume that the solution can be written as a power series
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with a positive radius of convergence. Then, all derivatives of y exist and can be attained with term-by-term
differentiation. In particular,
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Plugging the power series of y and %’ into the differential equation gives
o0 o0
0= Z(n + Dap412™ — Z anx"”
n=0 n=0

= Z [(n+ Dapt1 — an] 2™
n=0

An

Therefore, an+1 = for n > 0. Let ag be an arbitrary constant, then
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So, our power series solution is of the form
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Example 2.2. Consider the differential equation

y'+y=0,
and assume that the solution can be written as a power series
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with a positive radius of convergence. Then, all derivatives of y exist and can be attained with term-by-term
differentiation. In particular,
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Plugging the power series of y and 3" into the differential equation gives
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Therefore, a2 = fm, for n > 0. Let ag and ay be arbitrary constants, then
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So, our power series solution is of the form
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y(z) = ao E ToaT T e E T TN = agp cos(x) + aq sin(x).
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Example 2.3. Consider the differential equation

y" —xy =0,
and assume that the solution can be written as a power series
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with a positive radius of convergence. Then, all derivatives of y exist and can be attained with term-by-term
differentiation. In particular,
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Also, note that
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Plugging the power series of zy and 3" into the differential equation gives
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Therefore, as = 0 and a2 = (n_g)ﬁ It follows that
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for n > 1, where ag and ay are arbitrary constants.

3 Exercises
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