Differential Equations

Thomas R. Cameron

November 1, 2023

1 Daily Quiz

2 Key Topics

Today, we give examples on how power series can be used to solve differential equations. For further reading, see [1, Sections 7.2].

2.1 Examples

Example 2.1. Consider the differential equation

$$
y^{\prime}-y=0
$$

and assume that the solution can be written as a power series

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

with a positive radius of convergence. Then, all derivatives of y exist and can be attained with term-by-term differentiation. In particular,

$$
y^{\prime}=\sum_{n=0}^{\infty} n a_{n} x^{n-1}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

Plugging the power series of y and y^{\prime} into the differential equation gives

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left[(n+1) a_{n+1}-a_{n}\right] x^{n} .
\end{aligned}
$$

Therefore, $a_{n+1}=\frac{a_{n}}{n+1}$, for $n \geq 0$. Let a_{0} be an arbitrary constant, then

$$
\begin{aligned}
a_{1} & =\frac{a_{0}}{1} \\
a_{2} & =\frac{a_{1}}{2}=\frac{a_{0}}{2 \cdot 1} \\
& \vdots \\
a_{n} & =\frac{a_{0}}{n!}
\end{aligned}
$$

So, our power series solution is of the form

$$
y(x)=a_{0} \sum_{n=0}^{\infty} \frac{1}{n!} x^{n}=a_{0} e^{x}
$$

Example 2.2. Consider the differential equation

$$
y^{\prime \prime}+y=0
$$

and assume that the solution can be written as a power series

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

with a positive radius of convergence. Then, all derivatives of y exist and can be attained with term-by-term differentiation. In particular,

$$
y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Plugging the power series of y and $y^{\prime \prime}$ into the differential equation gives

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+a_{n}\right] x^{n}
\end{aligned}
$$

Therefore, $a_{n+2}=-\frac{a_{n}}{(n+2)(n+1)}$, for $n \geq 0$. Let a_{0} and a_{1} be arbitrary constants, then

$$
\begin{aligned}
a_{2} & =-\frac{a_{0}}{2 \cdot 1} \quad a_{3}=-\frac{a_{1}}{3 \cdot 2} \\
a_{4} & =\frac{a_{0}}{4!} \quad q_{5}=\frac{a_{1}}{5!} \\
\vdots & \\
a_{2 n} & =(-1)^{n} \frac{a_{0}}{(2 n)!} \quad a_{2 n+1}=(-1)^{n} \frac{a_{1}}{(2 n+1)!}
\end{aligned}
$$

So, our power series solution is of the form

$$
y(x)=a_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}+a_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=a_{0} \cos (x)+a_{1} \sin (x) .
$$

Example 2.3. Consider the differential equation

$$
y^{\prime \prime}-x y=0
$$

and assume that the solution can be written as a power series

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

with a positive radius of convergence. Then, all derivatives of y exist and can be attained with term-by-term differentiation. In particular,

$$
y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
$$

Also, note that

$$
x y=\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{n=1}^{\infty} a_{n-1} x^{n}
$$

Plugging the power series of $x y$ and $y^{\prime \prime}$ into the differential equation gives

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
& =2 a_{2}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-a_{n-1}\right] x^{n}
\end{aligned}
$$

Therefore, $a_{2}=0$ and $a_{n+2}=\frac{a_{n-1}}{(n+2)(n+1)}$ It follows that

$$
\begin{aligned}
a_{3 n} & =\frac{a_{0}}{(2 \cdot 3) \cdot(5 \cdot 6) \cdots((3 n-1) \cdot(3 n))} \\
a_{3 n+1} & =\frac{a_{1}}{(3 \cdot 4) \cdot(6 \cdot 7) \cdots((3 n) \cdot(3 n+1))} \\
a_{3 n+2} & =0
\end{aligned}
$$

for $n \geq 1$, where a_{0} and a_{1} are arbitrary constants.

3 Exercises

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

