Differential Equations

Thomas R. Cameron

November 13, 2023

1 Daily Quiz

2 Key Topics

Today, we introduce boundary value problems. For further reading, see [1, Sections 11.1].

2.1 Boundary Value Problems

A boundary value problem is a one-parameter family of differential equations associated with boundary conditions. For example, consider the boundary value problem

$$
\begin{equation*}
y^{\prime \prime}+\lambda y=0, y(0)=0, y(L)=0 \tag{1}
\end{equation*}
$$

where λ is a parameter and $L>0$.
Note that $y=0$ is always a solution of (11. However, we are interested in non-trivial solutions. We say that λ is an eigenvalue if (1) has a non-trivial solution, any such non-trivial solution is a corresponding eigenfunction.

We will consider cases $\lambda<0, \lambda=0$, and $\lambda>0$ to determine the eigenvalues and corresponding eigenfunctions of (1).

- If $\lambda<0$, then the characteristic equation $r^{2}+\lambda=0$ has two distinct real roots $r= \pm \sqrt{-\lambda}= \pm u$. Hence, the general solution to the differential equation is given by

$$
y=c_{1} e^{u x}+c_{2} e^{-u x} .
$$

Applying the boundary conditions gives

$$
\begin{aligned}
y(0) & =c_{1}+c_{2}=0 \\
y(L) & =c_{1} e^{u L}+c_{2} e^{-u L}=0
\end{aligned}
$$

which implies that $c_{1}=0$ and $c_{2}=0$. Therefore, if $\lambda<0$, then only the trivial solution exists.

- If $\lambda=0$, then the characteristic equation has two repeated roots $r=0,0$. Hence, the general solution to the differential equation is given by

$$
y=c_{1}+c_{2} x
$$

Applying the boundary conditions gives

$$
\begin{aligned}
y(0) & =c_{1}=0 \\
y(L) & =c_{1}+c_{2} L=0
\end{aligned}
$$

which implies that $c_{1}=0$ and $c_{2}=0$. Therefore, if $\lambda=0$, then only the trivial solution exists.

- If $\lambda>0$, then the characteristic equation has two imaginary roots $r= \pm i \sqrt{\lambda}$. Hence, the general solution to the differential equation is given by

$$
y=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)
$$

Applying the boundary conditions gives

$$
\begin{aligned}
& y(0)=c_{1}=0 \\
& y(L)=c_{1} \cos (\sqrt{\lambda} L)+c_{2} \sin (\sqrt{\lambda} L)=0,
\end{aligned}
$$

which implies that $c_{1}=0$ and $c_{2} \neq 0$ whenever $\sqrt{\lambda} L=n \pi$, where n is a positive integer.
Therefore, the eigenvalues of (1) are given by

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

and corresponding eigenfunctions are given by

$$
y_{n}=\sin \left(\frac{n \pi}{L} x\right)
$$

3 Exercises

Find the eigenvalues and corresponding eigenfunctions of

$$
\begin{equation*}
y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0, y^{\prime}(L)=0 . \tag{2}
\end{equation*}
$$

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

