Differential Equations

Thomas R. Cameron

November 14, 2023

1 Daily Quiz

Show that $\lambda=0$ is an eigenvalue of

$$
y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0, y^{\prime}(L)=0
$$

2 Key Topics

Today, we continue solving eigenvalue problems associated with boundary value problems. In addition, we introduce the notion of orthogonal functions. For further reading, see [1, Sections 11.1].

2.1 Boundary Value Problems

Last time, we ended with the following boundary value problem Find the eigenvalues and corresponding eigenfunctions of

$$
\begin{equation*}
y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0, y^{\prime}(L)=0 . \tag{1}
\end{equation*}
$$

We consider cases $\lambda<0, \lambda=0$, and $\lambda>0$ to determine the eigenvalues and corresponding eigenfunctions of (1).

- If $\lambda<0$, then the general solution is given by

$$
y=c_{1} e^{u x}+c_{2} e^{-u x},
$$

where $u=\sqrt{-\lambda}>0$. Applying the boundary conditions gives

$$
\begin{aligned}
y^{\prime}(0) & =c_{1} u-c_{2} u=0 \\
y^{\prime}(L) & =c_{1} u e^{u L}-c_{2} u e^{-u L}=0
\end{aligned}
$$

which implies that $c_{1}=0$ and $c_{2}=0$. Therefore, if $\lambda<0$, then only the trivial solution exists.

- If $\lambda=0$, then the general solution is given by

$$
y=c_{1}+c_{2} x
$$

Applying the boundary conditions gives

$$
\begin{array}{r}
y^{\prime}(0)=c_{2}=0 \\
y^{\prime}(L)=c_{2}=0
\end{array}
$$

which implies that c_{1} can be anything. Therefore, $\lambda=0$ is an eigenvalue of (1) with corresponding eigenfunction $y=1$.

- If $\lambda>0$, then the general solution is given by

$$
y=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)
$$

Applying the boundary conditions gives

$$
\begin{aligned}
y^{\prime}(0) & =\sqrt{\lambda} c_{2}=0 \\
y^{\prime}(L) & =-\sqrt{\lambda} c_{1} \sin (\sqrt{\lambda} L)+\sqrt{\lambda} c_{2} \cos (\sqrt{\lambda} L)=0
\end{aligned}
$$

which implies that $c_{2}=0$ and $c_{1} \neq 0$ whenever $\sqrt{\lambda} L=n \pi$, where n is a positive integer. Therefore,

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, n=1,2,3, \ldots
$$

are eigenvalues of 1 with corresponding eigenfunctions

$$
y_{n}=\cos \left(\frac{n \pi}{L} x\right), n=1,2,3, \ldots
$$

We summarize the eigenvalues and eigenfunctions for the two boundary value problems we've investigated thus far.

Theorem 2.1. The eigenvalues and eigenfunctions for the boundary value problem

$$
y^{\prime \prime}+\lambda y=0, y(0)=0, y(L)=0
$$

are given by

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, y_{n}=\sin \left(\frac{n \pi}{L} x\right), n=1,2,3, \ldots
$$

Theorem 2.2. The eigenvalues and eigenfunctions for the boundary value problem

$$
y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0, y^{\prime}(L)=0
$$

are given by

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, y_{n}=\cos \left(\frac{n \pi}{L} x\right), n=0,1,2,3, \ldots
$$

2.2 Orthogonal Functions

Two integrable functions f and g are said to be orthogonal on $[a, b]$ if

$$
\int_{a}^{b} f(x) g(x) d x=0
$$

Moreover, a collection of integrable functions $f_{1}, f_{2}, f_{3}, \ldots$ is said to be mutually orthogonal on $[a, b]$ if

$$
\int_{a}^{b} f_{i}(x) f_{j}(x) d x=0
$$

for all $i \neq j$.
Example 2.3. Let $f(x)=x$ and $g(x)=x^{2}$. Then, f and g are orthogonal on $[-1,1]$. Indeed, note that

$$
\begin{aligned}
\int_{-1}^{1} f(x) g(x) d x & =\int_{-1}^{1} x^{3} d x \\
& =\left.\frac{1}{4} x^{4}\right|_{-1} ^{1} \\
& =\frac{1}{4}(1-1)=0
\end{aligned}
$$

3 Exercises

Show that the eigenfunctions in Theorem 2.1 and Theorem 2.2 are mutually orthogonal.

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

