Differential Equations

Thomas R. Cameron

November 15, 2023

1 Daily Quiz

Show that $\lambda=0$ is an eigenvalue of

$$
y^{\prime \prime}+\lambda y=0, y(-L)=y(L), y^{\prime}(-L)=y^{\prime}(L)
$$

2 Key Topics

Today, we introduce the Fourier series:

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right)\right) \tag{1}
\end{equation*}
$$

where $L>0$. For further reading, see [1, Sections 11.2].

2.1 Orthogonality of Sine and Cosine Functions

The functions $\left\{\cos \left(\frac{n \pi}{L} x\right), \sin \left(\frac{n \pi}{L} x\right)\right\}_{n=1}^{\infty}$ are mutually orthogonal on $[-L, L]$. Indeed, we have

$$
\begin{aligned}
& \int_{-L}^{L} \cos \left(\frac{n \pi}{L} x\right) \cos \left(\frac{m \pi}{L} x\right) d x= \begin{cases}0 & m \neq n \\
L & m=n\end{cases} \\
& \int_{-L}^{L} \cos \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x=0 \\
& \int_{-L}^{L} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x= \begin{cases}0 & m \neq n \\
L & m=n\end{cases}
\end{aligned}
$$

2.2 Euler-Fourier Formulas

Suppose that the Fourier series in (1) converges for every $x \in[-L, L]$. Further, let $f(x)$ denote the value of the series for each $x \in[-L, L]$, i.e.,

$$
\begin{equation*}
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right)\right) . \tag{2}
\end{equation*}
$$

Now, multiply both sides of 22 by $\cos \left(\frac{m \pi}{L} x\right)$, where $m \geq 0$ is a fixed integer. Then, integrate with respect to x from $-L$ to L :

$$
\begin{aligned}
\int_{-L}^{L} f(x) \cos \left(\frac{m \pi}{L} x\right) d x & =\frac{1}{2} a_{0} \int_{-L}^{L} \cos \left(\frac{m \pi}{L} x\right) d x \\
& +\sum_{n=1}^{\infty}\left(a_{n} \int_{-L}^{L} \cos \left(\frac{n \pi}{L} x\right) \cos \left(\frac{m \pi}{L} x\right) d x+b_{n} \int_{-L}^{L} \sin \left(\frac{n \pi}{L} x\right) \cos \left(\frac{m \pi}{L} x\right) d x\right)
\end{aligned}
$$

If $m=0$, then we have

$$
\int_{-L}^{L} f(x) d x=a_{0} L
$$

hence, $a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x$. If $m \geq 1$, then we have

$$
\int_{-L}^{L} f(x) \cos \left(\frac{m \pi}{L} x\right) d x=a_{m} L
$$

hence, $a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{m \pi}{L} x\right) d x$.
Similarly, multiply both sides of (2) by $\sin \left(\frac{m \pi}{L} x\right)$, where $m \geq 0$ is a fixed integer. Then, integrate with respect to x from $-L$ to L :

$$
\begin{aligned}
\int_{-L}^{L} f(x) \sin \left(\frac{m \pi}{L} x\right) d x & =\frac{1}{2} a_{0} \int_{-L}^{L} \sin \left(\frac{m \pi}{L} x\right) d x \\
& +\sum_{n=1}^{\infty}\left(a_{n} \int_{-L}^{L} \cos \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x+b_{n} \int_{-L}^{L} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x\right)
\end{aligned}
$$

If $m=0$, then we have $0=0$. If $m \geq 1$, then we have

$$
\int_{-L}^{L} f(x) \sin \left(\frac{m \pi}{L} x\right) d x=b_{m} L
$$

hence, $b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{m \pi}{L} x\right) d x$.

3 Exercises

I. Prove the orthogonality formulas given in Section 2.1.
II. Find the Fourier series of

$$
f(x)= \begin{cases}-x & -2 \leq x<0 \\ x & 0 \leq x<2\end{cases}
$$

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

