Differential Equations

Thomas R. Cameron

November 17, 2023

1 Daily Quiz

2 Key Topics

Today, we review some basic examples of Fourier series:

$$
\begin{equation*}
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right)\right) \tag{1}
\end{equation*}
$$

where $L>0$. For further reading, see [1, Sections 11.2].
Recall that the coefficients of the Fourier series in (1) can be computed as follows:

$$
\begin{aligned}
a_{m} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{m \pi}{L} x\right) d x, m \geq 0 \\
b_{m} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{m \pi}{L} x\right) d x, m \geq 1
\end{aligned}
$$

2.1 Examples

Example 2.1. Last time we began the computation of the Fourier series of

$$
f(x)= \begin{cases}-x & -2 \leq x<0 \\ x & 0 \leq x<2\end{cases}
$$

Note that

$$
\begin{aligned}
a_{0} & =\frac{1}{2} \int_{-2}^{2} f(x) d x=2 \\
a_{m} & =\frac{1}{2} \int_{-2}^{2} f(x) \cos \left(\frac{m \pi}{2} x\right) d x, m \geq 1 \\
b_{m} & =\frac{1}{2} \int_{-2}^{2} f(x) \sin \left(\frac{m \pi}{2} x\right) d x, m \geq 1
\end{aligned}
$$

Since $\sin (x)$ is an odd function and $f(x)$ is an even function, it follows that $b_{m}=0$ for all $m \geq 1$. For $m \geq 1$, we have

$$
\begin{aligned}
a_{m} & =\frac{1}{2} \int_{-2}^{2} f(x) \cos \left(\frac{m \pi}{2} x\right) d x, m \geq 0 \\
& =\frac{1}{2}\left(-\int_{-2}^{0} x \cos \left(\frac{m \pi}{2} x\right) d x+\int_{0}^{2} x \cos \left(\frac{m \pi}{2} d x\right)\right)
\end{aligned}
$$

Using integration by parts, we find that

$$
\begin{aligned}
\int x \cos \left(\frac{m \pi}{2} x\right) d x & =\frac{2 x}{m \pi} \sin \left(\frac{m \pi}{2} x\right)-\frac{2}{m \pi} \int \sin \left(\frac{m \pi}{2} x\right) d x \\
& =\frac{2 x}{m \pi} \sin \left(\frac{m \pi}{2} x\right)+\frac{4}{m^{2} \pi^{2}} \cos \left(\frac{m \pi}{2} x\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
a_{m} & =\frac{1}{2}\left(-\int_{-2}^{0} x \cos \left(\frac{m \pi}{2} x\right) d x+\int_{0}^{2} x \cos \left(\frac{m \pi}{2} d x\right)\right) \\
& =\frac{1}{2}\left(-\left(\frac{4}{m^{2} \pi^{2}}-\frac{4}{m^{2} \pi^{2}}(-1)^{m}\right)+\left(\frac{4}{m^{2} \pi^{2}}(-1)^{m}-\frac{4}{m^{2} \pi^{2}}\right)\right) \\
& = \begin{cases}0 & m \text { is even } \\
-\frac{8}{m^{2} \pi^{2}} & m \text { is odd }\end{cases}
\end{aligned}
$$

So, the Fourier series of $f(x)$ is given by

$$
f(x)=1-\frac{8}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \left(\frac{(2 n-1) \pi}{2} x\right)
$$

3 Exercises

Find the Fourier series of $f(x)=x$ on $[-2,2]$.

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

