Differential Equations

Thomas R. Cameron

November 28, 2023

1 Daily Quiz

2 Key Topics

Today, we discuss the Fourier series of $f(x)$ on $[-L, L]$ when $f(x)$ is an even or an odd function. In addition, we introduce the Fourier Cosine and Sine series. For further reading, see [1, Sections 11.2-11.3].

Recall that we denote the Fourier series of f on $[-L, L]$ by

$$
\begin{equation*}
F(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right)\right), \tag{1}
\end{equation*}
$$

where $L>0$. Also, the coefficients of the Fourier series in (1) can be computed as follows:

$$
\begin{aligned}
& a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{m \pi}{L} x\right) d x, m \geq 0 \\
& b_{m}=\frac{1}{L} \int_{-L}^{L} \sin \left(\frac{m \pi}{L} x\right) d x, m \geq 1
\end{aligned}
$$

2.1 Examples

Example 2.1. Recall that the Fourier series of

$$
f(x)= \begin{cases}-x & -2 \leq x<0 \tag{2}\\ x & 0 \leq x<2\end{cases}
$$

on the interval $[-2,2]$ is given by

$$
F(x)=1-\frac{8}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \left(\frac{(2 n-1) \pi}{2} x\right)
$$

Note that only cosine terms appear in the Fourier series, this is due to the fact that $f(x)$ is an even function. Example 2.2. Recall that the Fourier series of $f(x)=x$ on the interval $[-2,2]$ is given by

$$
F(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \left(\frac{n \pi}{2} x\right)
$$

Note that only sine terms appear in the Fourier series, this is due to the fact that $f(x)$ is an odd function.
Example 2.3. Recall that the Fourier series of

$$
f(x)= \begin{cases}-x & -2 \leq x<0 \tag{3}\\ \frac{1}{2} & 0 \leq x<2\end{cases}
$$

on the interval $[-2,2]$ is given by

$$
F(x)=\frac{3}{4}+\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\cos (n \pi)-1}{n^{2}} \cos \left(\frac{n \pi}{2} x\right)+\frac{1}{2 \pi} \sum_{n=1}^{\infty} \frac{1+3 \cos (n \pi)}{n} \sin \left(\frac{n \pi}{2} x\right)
$$

Note that both cosine and sine terms appear in the Fourier series, this is due to the fact that $f(x)$ is neither even nor odd.

2.2 Even and Odd Functions

Let f be a function on $[-L, L]$. We say that f is an even function if $f(-x)=f(x)$ for all $x \in[-L, L]$. We say that f is an odd function if $f(-x)=-f(x)$ for all $x \in[-L, L]$. Note that

- the product of two even functions is even,
- the product of two odd functions is even,
- the product of an even and an an odd function is odd.

Theorem 2.4. If f is an even function on $[-L, L]$, then its Fourier series on $[-L, L]$ has coefficients $b_{m}=0$ for all $m \geq 1$ and

$$
a_{m}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x, m \geq 0
$$

If f is an odd function on $[-L, L]$, then its Fourier series on $[-L, L]$ has coefficients $a_{m}=0$ for all $m \geq 0$ and

$$
b_{m}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x, m \geq 1
$$

2.3 Fourier Cosine and Sine Series

Let f be a function on $[0, L]$. Define

$$
f_{e}(x)= \begin{cases}f(-x) & -L \leq x<0 \\ f(x) & 0 \leq x \leq L\end{cases}
$$

Then, f_{e} is an even extension of f. Therefore, by Theorem 2.4 the Fourier series of f_{e} on $[-L, L]$ has the form

$$
F_{e}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right)
$$

where

$$
a_{m}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{m \pi}{L} x\right) d x, m \geq 0
$$

We denote by $C(x)$ the Fourier Cosine series of f on $[0, L]$, which is defined by

$$
C(x)=F_{e}(x), x \in[0, L] .
$$

Theorem 2.5. If f and f^{\prime} are piecewise continuous on $[0, L]$, then $C(x)$ converges. Moreover,

- $C(0)=f\left(0^{+}\right)$
- $C(L)=f\left(L^{-}\right)$
- If $0<x<L$ and f is continuous at x, then $C(x)=f(x)$
- If $0<x<L$ and f is discontinuous at x, then $C(x)=\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}$

Similarly, the Fourier Sine series of f on $[0, L]$ is defined by

$$
S(x)=F_{o}(x), x \in[0, L]
$$

where $F_{o}(x)$ is the Fourier series of the odd extension of f :

$$
f_{o}(x)= \begin{cases}-f(-x) & -L \leq x<0 \\ f(x) & 0 \leq x \leq L\end{cases}
$$

Theorem 2.6. If f and f^{\prime} are piecewise continuous on $[0, L]$, then $S(x)$ converges. Moreover,

- $S(0)=0$
- $S(L)=0$
- If $0<x<L$ and f is continuous at x, then $S(x)=f(x)$
- If $0<x<L$ and f is discontinuous at x, then $S(x)=\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}$

3 Exercises

Let $f(x)=1+x^{2}$ on $[0,2]$
a. Find the Fourier Cosine series of f on $[0,2]$.
b. Find the Fourier Sine series of f on $[0,2]$.
c. Compare the Fourier Cosine and Sine series of f on $[0,2]$.

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

