Differential Equations

Thomas R. Cameron

November 3, 2023

1 Daily Quiz

2 Key Topics

Today, we continue examples on how power series can used to solve differential equations. Furthermore, we introduce theory that states when the solution of a differential equation can be expressed as a power series. For further reading, see [1, Sections 7.2].

2.1 Examples

Example 2.1. Consider the differential equation

$$
y^{\prime \prime}-x y=0
$$

and assume that the solution can be written as a power series

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

with a positive radius of convergence. Then, all derivatives of y exist and can be attained with term-by-term differentiation. In particular,

$$
y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Also, note that

$$
x y=\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{n=1}^{\infty} a_{n-1} x^{n}
$$

Plugging the power series of $x y$ and $y^{\prime \prime}$ into the differential equation gives

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
& =2 a_{2}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-a_{n-1}\right] x^{n}
\end{aligned}
$$

Therefore, $a_{2}=0$ and $a_{n+2}=\frac{a_{n-1}}{(n+2)(n+1)}$ It follows that

$$
\begin{aligned}
a_{3 n} & =\frac{a_{0}}{(2 \cdot 3) \cdot(5 \cdot 6) \cdots((3 n-1) \cdot(3 n))} \\
a_{3 n+1} & =\frac{a_{1}}{(3 \cdot 4) \cdot(6 \cdot 7) \cdots((3 n) \cdot(3 n+1))} \\
a_{3 n+2} & =0
\end{aligned}
$$

for $n \geq 1$, where a_{0} and a_{1} are arbitrary constants. Therefore, the solution to the differential equation can be written as

$$
y=a_{0}\left(1+\sum_{n=1}^{\infty} \frac{x^{3 n}}{2 \cdot 3 \cdots(3 n-1) \cdot(3 n)}\right)+a_{1}\left(x+\sum_{n=1}^{\infty} \frac{x^{3 n+1}}{3 \cdot 4 \cdots(3 n) \cdot(3 n+1)}\right)
$$

2.2 Theory

Thus, far we've always assume that we could represent the solution of a differential equation as a power serious. The following theorem gives us sufficient conditions for when this assumption is appropriate.

Theorem 2.2. Consider the differential equation

$$
p_{0}(x) y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=0
$$

where $p_{0}(x), p_{1}(x)$, and $p_{2}(x)$ are polynomials with no common factors. Let x_{0} be any real value such that $p_{0}\left(x_{0}\right) \neq 0$ and let $\rho>0$ denote the distance from x_{0} to the nearest zero of $p_{0}(x)$ (possibly in the complex plane). Note that $\rho=\infty$ if $p_{0}(x)$ is constant. Then, every solution of the given differential equation can be written as a power series

$$
y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

which converges on the interval $\left(x_{0}-\rho, x_{0}+\rho\right)$.
Example 2.3. Consider the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+y=0
$$

By Theorem 2.2 the solution to this differential equation can be represented as a power series, centered at 0 , that converges on the interval $(-1,1)$. To this end, let

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
y^{\prime} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{aligned}
$$

Then,

$$
x y^{\prime}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n+1}=\sum_{n=1}^{\infty} n a_{n} x^{n}
$$

and

$$
\begin{aligned}
\left(1-x^{2}\right) y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n+2} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n} \\
& =2 a_{2}+6 a_{3} x+\sum_{n=2}^{\infty}\left[(n+2)(n+1) a_{n+2}-n(n-1) a_{n}\right] x^{n}
\end{aligned}
$$

Therefore, the differential equation can be written as

$$
\begin{aligned}
0 & =2 a_{2}+6 a_{3} x+\sum_{n=2}^{\infty}\left[(n+2)(n+1) a_{n+2}-n(n-1) a_{n}\right] x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\left(2 a_{2}+a_{0}\right)+6 a_{3} x+\sum_{n=2}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n-1)(n+1) a_{n}\right] x^{n}
\end{aligned}
$$

Let a_{0} and a_{1} be arbitrary constants. Then, $a_{2}=-a_{0} / 2, a_{3}=0$, and

$$
a_{n+2}=\frac{(n-1)(n+1)}{(n+2)(n+1)} a_{n}=\frac{n-1}{n+2} a_{n},
$$

for $n \geq 2$. So, $a_{2 n+1}=0$ for $n \geq 1$ and

$$
\begin{aligned}
a_{4} & =\frac{1}{4} a_{2}=-\frac{1}{4 \cdot 2} a_{0} \\
a_{6} & =\frac{3}{6} a_{4}=-\frac{3 \cdot 1}{6 \cdot 4 \cdot 2} a_{0} \\
a_{8} & =\frac{5}{8} a_{6}=-\frac{5 \cdot 3 \cdot 1}{8 \cdot 6 \cdot 4 \cdot 2} a_{0} \\
& \vdots \\
a_{2 n} & =-\frac{(2 n-3) \cdot(2 n-5) \cdots(1)}{(2 n)(2 n-2) \cdots(2)} a_{0}
\end{aligned}
$$

Therefore the power series solution can be written as

$$
y=a_{1} x+a_{0}\left(1-\frac{1}{2} x^{2}-\sum_{n=2}^{\infty} \frac{(2 n-3)(2 n-5) \cdots(1)}{(2 n)(2 n-2) \cdots(2)} x^{2 n}\right)
$$

3 Exercises

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

