Differential Equations

Thomas R. Cameron

November 7, 2023

1 Daily Quiz

2 Key Topics

Today, we review the Laplace transform for solving the initial value problem

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=f(t), y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime} \tag{1}
\end{equation*}
$$

where $f(t)$ is a piecewise continuous function. For further reading, see [1, Sections 8.1-8.5].
Recall the definition of the Laplace transform

$$
L(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

and the table of Laplace transforms

$f(t)$	$F(s)=\mathcal{L}(f(t))$
1	$\frac{1}{s}$
t	$\frac{1}{s^{2}}$
$\cos (\omega t)$	$\frac{s}{\omega^{2}+s^{2}}$
$\sin (\omega t)$	$\frac{\omega}{\omega^{2}+s^{2}}$
$\cosh (\omega t)$	$\frac{s}{s^{2}-w^{2}}$
$\sinh (\omega t)$	$\frac{w}{s^{2}-w^{2}}$
$e^{a t} f(t)$	$F(s-a)$
$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$

Table 1: Laplace Transforms

2.1 Laplace Transform of the IVP

First, we review the Laplace transform of the derivative. Recall that $y(t)$ is exponentially bounded if

$$
|y(t)| \leq M e^{a t}, t \geq t_{0}
$$

for some constants M, a, t_{0}.
Proposition 2.1. Suppose that $y(t)$ is continuous and $y^{\prime}(t)$ is piecewise continuous. If $y(t)$ is exponentially bounded, then the Laplace transform of $y^{\prime}(t)$ exists for $s>a$ and

$$
\mathcal{L}\left(y^{\prime}\right)=s \mathcal{L}(y)-y(0)=s Y(s)-y(0)
$$

where $Y(s)$ is the Laplace transform of $y(t)$.

Proof. Note that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =\int_{0}^{\infty} e^{-s t} y^{\prime}(t) d t \\
& =\left.e^{-s t} y(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} y(t) d t \\
& =s \mathcal{L}(y)-y(0)
\end{aligned}
$$

Proposition 2.2. Suppose that $y(t)$ and $y^{\prime}(t)$ are continuous and $y^{\prime \prime}(t)$ is piecewise continuous. If $y(t)$ and $y^{\prime}(t)$ are exponentially bonded, then the Laplace transform of $y^{\prime \prime}(t)$ exists for $s>a$ and

$$
\mathcal{L}\left(y^{\prime \prime}\right)=s^{2} \mathcal{L}(y)-s y(0)-y^{\prime}(0)=s^{2} Y(s)-s y(0)-y^{\prime}(0)
$$

where $Y(s)$ is the Laplace transform of $y(t)$.
Proof. Note that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime \prime}\right) & =\int_{0}^{\infty} e^{-s t} y^{\prime \prime}(t) d t \\
& =\left.e^{-s t} y^{\prime}(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} y^{\prime}(t) d t \\
& =\left.e^{-s t} y^{\prime}(t)\right|_{0} ^{\infty}+s(s \mathcal{L}(y)-y(0)) \\
& =s^{2} \mathcal{L}(y)-s y(0)-y^{\prime}(0)
\end{aligned}
$$

Finally, we transform the entire initial value problem.
Theorem 2.3. Suppose that the Laplace transform of $y, y^{\prime}, y^{\prime \prime}, f$ exist. Then, the Laplace transform of (1) exists and can be written as

$$
Y(s)\left(a s^{2}+b s+c\right)=F(s)+(a s+b) y(0)+a y^{\prime}(0)
$$

3 Exercises

Solve the following initial value problem

$$
y^{\prime \prime}-2 y^{\prime}=\left\{\begin{array}{ll}
4 & 0 \leq t<1 \\
6 & t \geq 1
\end{array}, y(0)=2, y^{\prime}(0)=3\right.
$$

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

