Differential Equations

Thomas R. Cameron

August 23, 2023

1 Daily Quiz

For each differential equation below, state its order and whether it is linear or non-linear:
a. $y^{\prime \prime}(t)+\sin (t) y(t)=\cos (t)$.
b. $2 t y^{\prime}(t)-3 y(t)=e^{-t}$.
c. $y^{\prime}(t)+\frac{2}{y(t)}=5$.

2 Key Topics

A first-order initial value problem can be written in the following form

$$
\begin{equation*}
F\left(t, y, y^{\prime}\right)=0, y\left(t_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

where $y:=y(t)$ is a differentiable function of t. Note that the first-order initial value problem is simply a first-order differential equation combined with an initial condition $y\left(t_{0}\right)=y_{0}$. This initial condition specifies exactly one solution curve, when a solution exists. Today, we investigate how to use the initial condition and differential equation to numerically approximate the solution. For further reading, see [1, Section 1.4] and [2, Chapter 3].

2.1 Euler's Method

Suppose that the differential equation can be solved explicitly for y^{\prime}, i.e., we have

$$
y^{\prime}(t)=f(t, y)
$$

Assuming that $y(t)$ is twice differentiable, Taylor's theorem states that

$$
y(t)=y\left(t_{0}\right)+y^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)+\frac{y^{\prime \prime}(c)}{2}\left(t-t_{0}\right)^{2}
$$

where $t>t_{0}$ and c lies between t_{0} and t.
If $\left|t-t_{0}\right|$ is small, then the term $\frac{y^{\prime \prime}(c)}{2}\left(t-t_{0}\right)^{2}$ is negligible, which motivates the following approximation

$$
\begin{equation*}
y(t) \approx y\left(t_{0}\right)+y^{\prime}\left(t_{0}\right)\left(t-t_{0}\right) \tag{2}
\end{equation*}
$$

Define $h>0$ to be a step-size and $t_{1}=t_{0}+h$. Furthermore, define $y_{1} \approx y\left(t_{1}\right)$ via the equation in (2), i.e.,

$$
y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right)
$$

In a similar manner, let $t_{2}=t_{1}+h$ and define the approximation $y_{2} \approx y\left(t_{2}\right)$ as follows:

$$
y_{2}=y_{1}+h f\left(t_{1}, y_{1}\right)
$$

In general, we construct the equally spaced values $t_{0}<t_{1}<t_{2}<\cdots<t_{n}$, where $t_{i}=t_{i-1}+h$, for $i=1, \ldots, n$, and the approximations

$$
y_{i}=y_{i-1}+h f\left(t_{i-1}, y_{i-1}\right) .
$$

3 Exercises

Consider the initial value problem

$$
y^{\prime}(t)=y+t, y(0)=1
$$

I. Show that $y(t)=2 e^{t}-t-1$ satisfies the given initial value problem.
II. Use Euler's method to approximate the solution to the given initial value problem at

$$
t=0,0.1,0.2, \ldots, 1
$$

III. Compare the exact value to the approximate values and describe what happens as t varies from 0 to 1 .
IV. (*) Let $T>0$ and approximate the solution to the given initial value problem over $[0, T]$ by splitting the interval into $n>1$ sub-intervals and applying Euler's method. Show that

$$
y_{n}=\left(1+\frac{T}{n}\right)^{n}+\frac{T^{2}}{n^{2}} \cdot \frac{1}{\left(1+\frac{T}{n}\right)^{n}} \cdot \sum_{k=1}^{n} \frac{k-1}{\left(1+\frac{T}{n}\right)^{k}}
$$

and conclude that

$$
\lim _{n \rightarrow \infty} y_{n}=2 e^{T}-T-1
$$

i.e., as $n \rightarrow \infty$ the approximations via Euler's method approach the exact solution.

Hint:

$$
\frac{T^{2}}{n^{2}} \cdot \frac{1}{\left(1+\frac{T}{n}\right)^{n}} \cdot \sum_{k=1}^{n} \frac{k-1}{\left(1+\frac{T}{n}\right)^{k}}=\left(1+\frac{T}{n}\right)^{n}-T-1
$$

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

