Differential Equations

Thomas R. Cameron

August 28, 2023

1 Daily Quiz

Draw the phase line for the following differential equation

$$
y^{\prime}=y+2
$$

2 Key Topics

A linear first-order differential equation can be written in the form

$$
\begin{equation*}
y^{\prime}+p(t) y=q(t) \tag{1}
\end{equation*}
$$

where $y:=y(t)$ is a differentiable function of t. Today we will introduce the method of integration factor for solving linear first-order differential equations. For further reading, see [1, Section 1.5] and [2, Section 2.1].

2.1 Integration Factor

We seek a $\mu(t)$ such that

$$
\begin{equation*}
\mu(t) y^{\prime}+\mu(t) p(t) y=\frac{d}{d t} F(t, y) \tag{2}
\end{equation*}
$$

for some function $F(t, y)$. An equation in the form of (2) is called exact. Recall that the total derivative of $F(t, y)$ is given by

$$
\begin{equation*}
\frac{d}{d t} F(t, y)=\frac{\partial}{\partial t} F(t, y)+\frac{\partial}{\partial y} F(t, y) \frac{d y}{d t} . \tag{3}
\end{equation*}
$$

By matching equations (2) and (3), we find that

$$
\frac{\partial}{\partial y} F(t, y)=\mu(t)
$$

Hence, $F(t, y)=\mu(t) y$. Furthermore,

$$
\frac{\partial}{\partial t} F(t, y)=\mu^{\prime}(t) y=\mu(t) p(t) y
$$

which implies that $\mu^{\prime}(t)=\mu(t) p(t)$. Therefore,

$$
\begin{equation*}
\mu(t)=e^{P(t)} \tag{4}
\end{equation*}
$$

where $P(t)$ is any antiderivative of $p(t)$. The function $\mu(t)$ defined in (4) is known as an integration factor of the corresponding differential equation.
Example 2.1. Consider the linear first-order differential equation

$$
y^{\prime}-3 y=t
$$

Note that $P(t)=-3 t$ is an anti-derivative of $p(t)=-3$. Hence, an integration factor is given by

$$
\mu(t)=e^{-3 t}
$$

3 General and Particular Solutions

Once an integration factor has been found for the linear first-order differential equation in (1), a general solution can be found as follows:
I. Multiply both sides of the differential equation by $\mu(t)$:

$$
\mu(t) y^{\prime}+\mu(t) p(t) y=\mu(t) q(t)
$$

II. Re-write the left-hand side as an exact differential:

$$
\frac{d}{d t} \mu(t) y=\mu(t) q(t)
$$

III. Integrate both sides with respect to t :

$$
\mu(t) y=\int \mu(t) q(t) d t
$$

IV. Solve for y :

$$
y=\frac{1}{\mu(t)} \int \mu(t) q(t) d t
$$

Note that the indefinite integral has a " $+C$ " constant built into its definitions. If an initial condition is given, then a particular solution can be formed by solving for the constant C.
Example 3.1. Consider the linear first-order initial value problem

$$
y^{\prime}-3 y=t, y(0)=1
$$

We know that $\mu(t)=e^{-3 t}$ is an integration factor. Hence,

$$
y=e^{3 t} \int t e^{-3 t} d t
$$

is a general solution. Using integration by parts, we find

$$
\begin{aligned}
\int t e^{-3 t} d t & =-\frac{1}{3} t e^{-3 t}+\frac{1}{3} \int e^{-3 t} d t \\
& =-\frac{1}{3} t e^{-3 t}-\frac{1}{9} e^{-3 t}+C
\end{aligned}
$$

Therefore, the general solution is given by

$$
\begin{aligned}
y & =e^{3 t}\left(-\frac{1}{3} t e^{-3 t}-\frac{1}{9} e^{-3 t}+C\right) \\
& =-\frac{1}{3} t-\frac{1}{9}+C e^{3 t}
\end{aligned}
$$

By applying the initial condition, we have

$$
y(0)=-\frac{1}{9}+C=1
$$

which implies that $C=1+\frac{1}{9}=\frac{10}{9}$ and the particular solution is

$$
y=-\frac{1}{3} t-\frac{1}{9}+\frac{10}{9} e^{3 t}
$$

4 Exercises

Solve each of the following initial value problems.
I. $y^{\prime}+\frac{1-t}{t} y=t^{2}, y(1)=0$
II. $y^{\prime}+y=\sin (t), y(0)=1$

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

