Differential Equations

Thomas R. Cameron

August 29, 2023

1 Daily Quiz

Find the general solution of the differential equation

$$
y^{\prime}+\frac{1}{t} y=t^{2}
$$

2 Key Topics

A separable first-order differential equation can be written in the form

$$
n(y) y^{\prime}+m(t)=0
$$

where $y:=y(t)$ is a differentiable function of t. Today we will introduce the method of separation of variables to solve separable first-order differential equations. For further reading, see [1, Section 1.2] and 2, Section 2.2].

2.1 Separation of Variables

Every separable first-order differential equation can be written as an exact differential

$$
\frac{d}{d t}(N(y)+M(t))=0
$$

where $\frac{d}{d y} N(y)=n(y)$ and $\frac{d}{d t} M(t)=m(t)$, i.e., $N(y)$ and $M(t)$ are antiderivatives of $n(y)$ and $m(t)$, respectively. Indeed, taking the derivative on the left hand side gives

$$
N^{\prime}(y) y^{\prime}+M^{\prime}(t)=0 \Rightarrow n(y) y^{\prime}+m(t)=0
$$

So, the general solution to every separable first-order differential equation can be written as

$$
N(y)+M(t)=C .
$$

Therefore, every separable first-order differential equation can be solved by finding an antiderivative of $n(y)$ and $m(t)$.
Example 2.1. Consider the separable first-order differential equation

$$
y^{\prime}=\frac{t^{2}}{1-y^{2}}
$$

We can rewrite the given differential equation as follows

$$
\left(1-y^{2}\right) y^{\prime}-t^{2}=0
$$

hence it is separable. Note that

$$
\frac{d}{d y}\left(y-\frac{1}{3} y^{3}\right)=1-y^{2}
$$

and

$$
\frac{d}{d t}\left(-\frac{1}{3} t^{3}\right)=-t^{2}
$$

Therefore, the general solution is given by

$$
y-\frac{1}{3} y^{3}-\frac{1}{3} t^{3}=C .
$$

3 Exercises

Solve each of the following initial value problems.
I. $y^{\prime}=\sqrt{t y}, y(1)=1$.
II. $y^{\prime}=\frac{3 t^{2}+4 t+2}{2(y-1)}, y(0)=-1$.
III. $y^{\prime}=\frac{4 t-t^{3}}{4+y^{3}}, y(0)=1$
IV. $y^{\prime}=\frac{t^{2}}{y\left(2+t^{3}\right)}, y(0)=-2$.

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

