Differential Equations

Thomas R. Cameron

September 12, 2023

1 Daily Quiz

Find a equilibrium solution for the first-order autonomous linear system:

$$x' = ax + by$$
$$y' = cx + dy$$

where a, b, c, d are constants.

2 Key Topics

Today we discuss analytic solutions to *first-order linear autonomous systems of differential equations* that can be written in the following form

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$
(1)

where x := x(t) and y := y(t) are differentiable functions. In particular, we will use eigenvalues and eigenvectors of the matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
(2)

to form the general solution of the system in (1) and draw its phase plane. For further reading, see [1, Section 3.3].

3 Eigenvalues and Eigenvectors

A scalar λ and corresponding vector v is an *eigenvalue* and *eigenvector*, respectively, of a matrix A if

$$A\mathbf{v} = \lambda \mathbf{v}.$$

Given a 2×2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

the eigenvalues of A are given by the roots of the quadratic

$$\lambda^2 - \lambda \left(a + d\right) + \left(ad - bc\right)$$

Note that the trace of the matrix A is (a + d) and the determinant of the matrix A is (ad - bc).

Given the eigenvalues λ_1, λ_2 , a corresponding eigenvector \mathbf{v}_1 can be formed from the null space of $\lambda_1 I - A$, and a corresponding eigenvector \mathbf{v}_2 can be formed from the null space of $\lambda_2 I - A$.

Example 3.1. Consider the first-order autonomous system

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 8 & -3\\18 & -7 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

The eigenvalues are given by the roots of the quadratic

$$\lambda^{2} - \lambda - 2 = (\lambda - 2) (\lambda + 1)$$

Hence, we have eigenvalues $\lambda_1 = -1$, $\lambda_2 = 2$. Furthermore, corresponding eigenvectors can be found from the null spaces

$$\lambda_1 I - A = \begin{bmatrix} -9 & 3\\ -18 & 6 \end{bmatrix} \rightarrow \mathbf{v}_1 = \begin{bmatrix} 1\\ 3 \end{bmatrix}$$

and

$$\lambda_2 I - A = \begin{bmatrix} -6 & 3\\ -18 & 9 \end{bmatrix} \rightarrow \mathbf{v}_2 = \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

4 General Solution

Given the eigenvalues and corresponding eigenvectors of the matrix in (2), the general solution of the system in (1) can be written as

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t},$$

provided the eigenvalues λ_1 and λ_2 are real and distinct (this is the only case we will consider).

Example 4.1. The system in Example 3.1 has the following general solution

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t}.$$

The phase plane of the system in (1) can be formed from the general solution as follows:

- I. Sketch the stable line solutions, i.e., the solution curves that are along the line spanned by \mathbf{v}_1 and \mathbf{v}_2 .
- II. Draw arrows on the stable line solutions: point toward the origin if the corresponding eigenvalue is negative, point away from the origin if the corresponding eigenvalue is positive.
- III. Sketch solution curves between each stable line solution.

IV. Classify the equilibrium solution at the origin:

- Saddle: if $\lambda_1 < 0 < \lambda_2$,
- Sink: if $\lambda_1 < \lambda_2 < 0$,
- Source: if $0 < \lambda_1 < \lambda_2$.

5 Exercises

Sketch the phase plane for the system in Example 3.1.

References

[1] T. W. JUDSON, *The Ordinary Differential Equations Project*, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.