Differential Equations

Thomas R. Cameron

September 18, 2023

1 Daily Quiz

2 Key Topics

Today we begin an investigation of higher order differential equations. In particular, we start with secondorder linear homogeneous differential equations, which can be written in the following form

$$y'' + p(t)y' + q(t) = 0,$$
(1)

where y := y(t) is a differentiable function of t. For further reading, see [1, Section 5.1].

2.1 Existence and Uniqueness

Theorem 2.1. Suppose p(t) and q(t) are continuous on an open interval (a,b). Then, the initial value problem

$$y'' + p(t)y' + q(t) = 0, \ y(t_0) = y_0, \ y'(t_0) = y'_0$$

has a unique solution for all $t_0 \in (a, b)$.

Example 2.2. Consider the differential equation

$$y'' - y = 0.$$

Note that both $y_1(t) = e^t$ and $y_2(t) = e^{-t}$ satisfy the given differential equation.

Example 2.3. Consider the differential equation

$$y'' + \omega^2 y = 0.$$

Note that both $y_1(t) = \cos(\omega t)$ and $y_2(t) = \sin(\omega t)$ satisfy the given differential equation.

Example 2.4. Consider the differential equation

$$t^2y'' + ty' - 4y = 0.$$

Note that both $y_1(t) = t^2$ and $y_2(t) = 1/t^2$ satisfy the given differential equation.

2.2 General Solutions

Given $y_1(t)$ and $y_2(t)$ defined on an interval (a, b) and constant c_1 and c_2 , the function

$$y(t) = c_1 y_1(t) + c_2 y_2(t) \tag{2}$$

is a *linear combination* of y_1 and y_2 .

Theorem 2.5. If y_1 and y_2 are solutions of the differential equation in (1), then the linear combination in (2) is also a solution for any constants c_1 and c_2 .

Proof. Suppose that y_1 and y_2 are solutions of the differential equation in (1). Let c_1 and c_2 be constants and define y(t) as the linear combination in (2). Then

$$y'' + p(t)y' + q(t)y = (c_1y''_1 + c_2y''_2) + p(t)(c_1y'_1 + c_2y'_2) + q(t)(c_1y_1 + c_2y_2)$$

= $c_1(y''_1 + p(t)y'_1 + q(t)y_1) + c_2(y''_2 + p(t)y'_2 + q(t)y_2)$
= $c_1 \cdot 0 + c_2 \cdot 0 = 0.$

We say that $\{y_1, y_2\}$ forms a fundamental set of solutions to (1) if every solution to (1) on can be written as a linear combination of y_1 and y_2 . In this case, we say that the linear combination in (2) forms a general solution to (1).

We say that $\{y_1, y_2\}$ forms a *linearly independent set* if y_1 and y_2 are not constant multiples of each other.

Theorem 2.6. Suppose p(t) and q(t) are continuous on (a, b). Then, $\{y_1, y_2\}$ forms a fundamental set of solutions to (1) if and only if $\{y_1, y_2\}$ is a linearly independent set.

3 Exercises

- I. Show that the solutions y_1 and y_2 form a fundamental set for each differential equation in Examples 2.2–2.3. Then, construct the general solution for each differential equation.
- II. Find the particular solution for each differential equation in Examples 2.2–2.3 with the additional initial conditions

$$y(0) = 1, y'(0) = 2.$$

III. Show that there are infinitely many solutions to the differential equation in Example 2.3 that satisfy the boundary conditions

$$y(0) = 1, y(\pi) = -1.$$

References

[1] W. TRENCH, *Elementary Differential Equations with Boundary Value Problems*, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.