Differential Equations

Thomas R. Cameron

September 18, 2023

1 Daily Quiz

2 Key Topics

Today we begin an investigation of higher order differential equations. In particular, we start with secondorder linear homogeneous differential equations, which can be written in the following form

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t)=0, \tag{1}
\end{equation*}
$$

where $y:=y(t)$ is a differentiable function of t. For further reading, see [1, Section 5.1].

2.1 Existence and Uniqueness

Theorem 2.1. Suppose $p(t)$ and $q(t)$ are continuous on an open interval (a, b). Then, the initial value problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t)=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

has a unique solution for all $t_{0} \in(a, b)$.
Example 2.2. Consider the differential equation

$$
y^{\prime \prime}-y=0
$$

Note that both $y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{-t}$ satisfy the given differential equation.
Example 2.3. Consider the differential equation

$$
y^{\prime \prime}+\omega^{2} y=0
$$

Note that both $y_{1}(t)=\cos (\omega t)$ and $y_{2}(t)=\sin (\omega t)$ satisfy the given differential equation.
Example 2.4. Consider the differential equation

$$
t^{2} y^{\prime \prime}+t y^{\prime}-4 y=0
$$

Note that both $y_{1}(t)=t^{2}$ and $y_{2}(t)=1 / t^{2}$ satisfy the given differential equation.

2.2 General Solutions

Given $y_{1}(t)$ and $y_{2}(t)$ defined on an interval (a, b) and constant c_{1} and c_{2}, the function

$$
\begin{equation*}
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t) \tag{2}
\end{equation*}
$$

is a linear combination of y_{1} and y_{2}.
Theorem 2.5. If y_{1} and y_{2} are solutions of the differential equation in (1), then the linear combination in (2) is also a solution for any constants c_{1} and c_{2}.

Proof. Suppose that y_{1} and y_{2} are solutions of the differential equation in (1). Let c_{1} and c_{2} be constants and define $y(t)$ as the linear combination in (2). Then

$$
\begin{aligned}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y & =\left(c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}\right)+p(t)\left(c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}\right)+q(t)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
& =c_{1}\left(y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}\right)+c_{2}\left(y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}\right) \\
& =c_{1} \cdot 0+c_{2} \cdot 0=0
\end{aligned}
$$

We say that $\left\{y_{1}, y_{2}\right\}$ forms a fundamental set of solutions to (1) if every solution to (1) on can be written as a linear combination of y_{1} and y_{2}. In this case, we say that the linear combination in (2) forms a general solution to (1).

We say that $\left\{y_{1}, y_{2}\right\}$ forms a linearly independent set if y_{1} and y_{2} are not constant multiples of each other.

Theorem 2.6. Suppose $p(t)$ and $q(t)$ are continuous on (a, b). Then, $\left\{y_{1}, y_{2}\right\}$ forms a fundamental set of solutions to (1) if and only if $\left\{y_{1}, y_{2}\right\}$ is a linearly independent set.

3 Exercises

I. Show that the the solutions y_{1} and y_{2} form a fundamental set for each differential equation in Examples $2.2 \sqrt{2.3}$. Then, construct the general solution for each differential equation.
II. Find the particular solution for each differential equation in Examples $2.2,2.3$ with the additional initial conditions

$$
y(0)=1, y^{\prime}(0)=2
$$

III. Show that there are infinitely many solutions to the differential equation in Example 2.3 that satisfy the boundary conditions

$$
y(0)=1, y(\pi)=-1
$$

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

