Differential Equations

Thomas R. Cameron

September 19, 2023

1 Daily Quiz

Find the particular solution of the initial value problem:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0, y(0)=1, y^{\prime}(0)=1
$$

given the fact that $y_{1}(t)=e^{-2 t}$ and $y_{2}(t)=e^{-t}$ are both solutions of the differential equaiton.

2 Key Topics

Today, we introduce the Wronskian for second-order linear homogeneous differential equations, which can be used to determine when $\left\{y_{1}, y_{2}\right\}$ forms a fundamental set of solutions. For further reading, see [1] Section 5.1].

2.1 The Wronskian

Let y_{1} and y_{2} be solutions to the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{1}
\end{equation*}
$$

where $y:=y(t)$ is a differentiable function of t. The Wronskian of $\left\{y_{1}, y_{2}\right\}$ is defined as the determinant:

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \tag{2}\\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} .
$$

If $p(t)$ and $q(t)$ are continuous on (a, b), then the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \tag{3}
\end{equation*}
$$

has a unique solution for any $t_{0} \in(a, b)$ and for any $y_{0}, y_{0}^{\prime} \in \mathbb{R}$. In this case, $\left\{y_{1}, y_{2}\right\}$ forms a fundamental set if and only if

$$
\begin{align*}
& c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=y_{0} \\
& c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \tag{4}
\end{align*}
$$

has a unique solution for all $t_{0} \in(a, b)$ and for all $y_{0}, y_{0}^{\prime} \in \mathbb{R}$, which is true if and only if the Wronskian is non-zero, i.e., $W\left(y_{1}, y_{2}\right) \neq 0$.

2.2 Abel's Formula

Interestingly, the Wronskian can be expressed as a natural exponent. Indeed, by differentiating both sides of the determinant in (2) we find
$W^{\prime}=y_{1}^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime \prime}-y_{2}^{\prime} y_{1}^{\prime}-y_{2} y_{1}^{\prime \prime}=y_{1} y_{2}^{\prime \prime}-y_{2} y_{1}^{\prime \prime}$.

Since y_{1} and y_{2} are solutions to the differential equation in (1), it follows that

$$
y_{1}^{\prime \prime}=-p(t) y_{1}^{\prime}-q(t) y_{1} \text { and } y_{2}^{\prime \prime}=-p(t) y_{2}^{\prime}-q(t) y_{2}
$$

Therefore, the derivative of the Wronskian can be written as

$$
\begin{aligned}
W^{\prime} & =-y_{1}\left(p(t) y_{2}^{\prime}+q(t) y_{2}\right)+y_{2}\left(p(t) y_{1}^{\prime}+q(t) y_{1}\right) \\
& =-p(t)\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)-q(t)\left(y_{1} y_{2}-y_{1} y_{2}\right) \\
& =-p(t) W
\end{aligned}
$$

So, the derivative of W is equal to a multiple of W; hence, we have the following general solution

$$
\begin{equation*}
W=C e^{-\int p(t) d t} \tag{5}
\end{equation*}
$$

Equation 5 implies that the Wronskian is either always zero or never zero on any open interval where $p(t)$ is continuous. Therefore, we can check the Wronskian in (2) at a single value of t.

3 Exercises

Consider the differential equation:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

with the fundamental set of solutions $y_{1}(t)=e^{-2 t}$ and $y_{2}(t)=e^{-t}$.
I. Find the Wronskain using (2).
II. Verify that equation (5) holds for some value of C.
III. Verify that $\left\{y_{1}, y_{2}\right\}$ forms a fundamental set.

References

[1] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

