# Differential Equations 

Thomas R. Cameron

September 20, 2023

## 1 Daily Quiz

Find the general form of the Wronksian associated with the differential equation

$$
y^{\prime \prime}+t y^{\prime}+2 y=0
$$

## 2 Key Topics

Today, we introduce a method for finding a fundamental set of solutions for second-order linear homogeneous differential equations of the form:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

where $a, b, c$ are constants and $a \neq 0$. Such differential equations are said to have constant coefficients. For further reading, see [2, Section 5.2] or [1, Section 4.1]

### 2.1 The Characteristic Equation.

We seek solutions to (1) of the form $y=e^{r t}$. Plugging into the differential equation gives

$$
a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0
$$

Factoring out the $e^{r t}$ term gives

$$
e^{r t}\left(a r^{2}+b r+c\right)=0
$$

Since $e^{r t}$ is never zero, it follows that $\left(a r^{2}+b r+c\right)=0$. Using the quadratic formula gives

$$
\begin{equation*}
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{2}
\end{equation*}
$$

If $b^{2}-4 a>0$, then we have two distinct real solutions to (2), which we denote by $r_{1}, r_{2}$. Define $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=e^{r_{2} t}$. Then, the Wronskian is given by

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{r_{1} t} & e^{r_{2} t} \\
r_{1} e^{r_{1} t} & r_{2} e^{r_{2} t}
\end{array}\right|=e^{\left(r_{1}+r_{2}\right) t}\left(r_{2}-r_{1}\right) \neq 0
$$

Hence $\left\{y_{1}, y_{2}\right\}$ forms a fundamental set for the differential equation in 11.

### 2.2 Repeated and Complex Roots

If $b^{2}-4 a c=0$, then we have a single repeated solution to $\sqrt{2}$, which we denote by $r$. We will show that $y_{1}(t)=e^{r t}$ and $y_{2}(t)=t e^{r t}$ form a fundamental set for the differential equation in (1).

If $b^{2}-4 a c<0$, then we have two distinct complex solutions to (2), which we denote by $r_{1}=w+i z$ and $r_{2}=w-i z$. We will show that $y_{1}(t)=e^{w t} \cos (z t)$ and $y_{2}(t)=e^{w t} \sin (z t)$ form a fundamental set for the differential equation in (1).

## 3 Exercises

Solve the following initial value problems.
I. $y^{\prime \prime}+6 y^{\prime}+5 y=0, y(0)=3, y^{\prime}(0)=-1$.
II. $y^{\prime \prime}+7 y^{\prime}+12 y=0, y(1)=3, y^{\prime}(1)=5$.

## References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

