Differential Equations

Thomas R. Cameron

September 22, 2023

1 Daily Quiz

Find the roots of the characteristic equation associated with the differential equation

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

2 Key Topics

Today we discuss solutions for second-order linear homogeneous constant coefficient differential equations:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0, a \neq 0 \tag{1}
\end{equation*}
$$

where the characteristic equation

$$
a r^{2}+b r+c=0
$$

has a single repeated root r. For further reading, see [2, Section 5.2] or [1, Section 4.1]

2.1 Fundamental Set of Solutions

We can form a fundamental set of solutions in the case of a repeated root with

$$
y_{1}(t)=e^{r t}, y_{2}(t)=t e^{r t}
$$

First, we must show that y_{1} and y_{2} satisfy the differential equation in (1). To this end, note that

$$
\begin{aligned}
a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1} & =a\left(r^{2} e^{r t}\right)+b\left(r e^{r t}\right)+c\left(e^{r t}\right) \\
& =e^{r t}\left(a r^{2}+b r+c\right)=0
\end{aligned}
$$

where $a r^{2}+b r+c=0$ since r is a root of the characteristic equation. Also,

$$
\begin{aligned}
a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2} & =a\left(2 r e^{r t}+r^{2} t e^{r t}\right)+b\left(e^{r t}+r t e^{r t}\right)+c\left(t e^{r t}\right) \\
& =t e^{r t}\left(a r^{2}+b r+c\right)+e^{r t}(2 a r+b) \\
& =0+0
\end{aligned}
$$

where $2 a r+b=0$ since the single repeated root is $r=-\frac{b}{2 a}$.
Second, we must show that the Wronskian is non-zero. To this end, note that

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{r t} & t e^{r t} \\
r e^{r t} & e^{r t}+r t e^{r t}
\end{array}\right|=e^{2 r t} .
$$

3 Exercises

Solve the following initial value problems.
I. $y^{\prime \prime}+6 y^{\prime}+9 y=0, y(0)=3, y^{\prime}(0)=-1$.
II. $y^{\prime \prime}+4 y^{\prime}+4 y=0, y(1)=3, y^{\prime}(1)=5$.

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

