Differential Equations

Thomas R. Cameron

September 26, 2023

1 Daily Quiz

Find a fundamental set of solutions for the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

2 Key Topics

Today we discuss solutions for second-order linear non-homogeneous differential equations:

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t) \tag{1}
\end{equation*}
$$

where $y:=y(t)$ is a differentiable function. For further reading, see [2, Section 5.3] or [1, Section 4.2].

2.1 General Solution

We say that y_{p} is a particular solution of the non-homogeneous differential equation in (1) if

$$
y_{p}^{\prime \prime}+p(t) y_{p}^{\prime}+q(t) y_{p}=f(t)
$$

Moreover, there is a complementary homogeneous differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

Theorem 2.1. Suppose $p(t), q(t), f(t)$ are continuous on an interval (a, b). Let y_{p} be a particular solution on (a, b) and let $\left\{y_{1}, y_{2}\right\}$ be a fundamental set of solutions on (a, b) of the complementary homogeneous differential equation. Then y is a solution of (1) if and only if

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}
$$

for some constants c_{1} and c_{2}.
Proof. Suppose that

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}
$$

Then,

$$
\begin{aligned}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y & =\left(y_{p}^{\prime \prime}+c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}\right)+p(t)\left(y_{p}^{\prime}+c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}\right)+q(t)\left(y_{p}+c_{1} y_{1}+c_{2} y_{2}\right) \\
& =\left(y_{p}^{\prime \prime}+p(t) y_{p}^{\prime}+q(t) y_{p}\right)+c_{1}\left(y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}\right)+c_{2}\left(y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}\right) \\
& =f(t)+c_{1}(0)+c_{2}(0)=f(t)
\end{aligned}
$$

Now, suppose that $y(t)$ is a solution of (1). Then, $y-y_{p}$ is a solution to the complementary homogeneous differential equation. Indeed,

$$
\begin{aligned}
\left(y^{\prime \prime}-y_{p}^{\prime \prime}\right)+p(t)\left(y^{\prime}-y_{p}^{\prime}\right)+q(t)\left(y-y_{p}\right) & =\left(y^{\prime \prime}+p(t) y^{\prime}+q(t) y\right)-\left(y_{p}^{\prime \prime}+p(t) y_{p}^{\prime}+q(t) y_{p}\right) \\
& =f(t)-f(t)=0
\end{aligned}
$$

Therefore,

$$
y-y_{p}=c_{1} y_{1}+c_{2} y_{2}
$$

for some constants c_{1} and c_{2}.

2.2 Undetermined Coefficients

The method of undetermined coefficients makes an assumption about the initial form of a particular solution y_{p}. For example, consider the non-homogeneous differential equation below

$$
y^{\prime \prime}+y^{\prime}+2 y=3
$$

One may guess a particular solution of the form $y_{p}=c$, where c is is some constant. Plugging this y_{p} into the differential equation gives

$$
2 c=3
$$

which implies that $y_{p}=3 / 2$ is a particular solution of the given differential equation.
However, the following non-homogeneous differential equation is not so easy:

$$
y^{\prime \prime}+y^{\prime}=3
$$

This time, if we guess a particular solution of the form $y_{p}=c$, where c is some constant, then we get $0=3$. This contradiction occurs because $y_{p}=c$ is a solution to the complementary homogeneous differential equation $y^{\prime \prime}+y^{\prime}=0$, which has characteristic equation $r^{2}+r=0$. When a particular solution is also a solution to the complementary homogeneous equation, we must multiply it by t until it is no longer a solution. In this case, we have $y_{p}=c t$. Plugging y_{p} into the differential equation gives us

$$
c=3 .
$$

3 Exercises

Use the method of undetermined coefficients to find a particular solution for each of the following differential equations.
I. $y^{\prime \prime}+y=2 e^{-t}$
II. $y^{\prime \prime}+2 y^{\prime}+y=2 e^{-t}$
III. $y^{\prime \prime}+y^{\prime}+y=\cos (t)$.

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

