Differential Equations

Thomas R. Cameron

September 27, 2023

1 Daily Quiz

Find a particular solution to the non-homogeneous differential equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=3 t+5
$$

2 Key Topics

Today we use the method of undetermined coefficients to solve second-order linear non-homogeneous differential equations:

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t) \tag{1}
\end{equation*}
$$

where $y:=y(t)$ is a differentiable function. Recall that every solution to (1) is of the form

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}
$$

where y_{p} is a particular solution to (1) and $\left\{y_{1}, y_{2}\right\}$ form a fundamental set for the complementary homogeneous differential equation.

The method of undetermined coefficients makes an assumption about the initial form of a particular solution. The table below provides a summary of the basic forms for $f(t)$ and the corresponding initial guess for y_{p}. Note that y_{p} must be plugged into (1) in order to determined the constants A_{0}, \ldots, A_{n}. Furthermore, the y_{p} form may be multiplied by a power of t so that the given form is not a solution to the complementary homogeneous differential equation.

$f(t)$	$y_{p}(t)$
$\sum_{i=0}^{n} a_{i} t^{i}$	$\sum_{i=0}^{n} A_{i} t^{i}$
$\left(\sum_{i=0}^{n} a_{i} t^{2}\right) e^{a t}$	$\left(\sum_{i=0}^{n} A_{i} t^{i}\right) e^{a t}$
$\left(\sum_{i=0}^{n} a_{i} t^{i}\right) e^{a t} \cos (b t)$	$\left(\sum_{i=0}^{n} A_{i} t^{i}\right) e^{a t} \cos (b t)+\left(\sum_{i=0}^{n} B_{i} t^{i}\right) e^{a t} \sin (b t)$
$\left(\sum_{i=0}^{n} a_{i} t^{i}\right) e^{a t} \sin (b t)$	$\left(\sum_{i=0}^{n} A_{i} t^{i}\right) e^{a t} \cos (b t)+\left(\sum_{i=0}^{n} B_{i} t^{i}\right) e^{a t} \sin (b t)$

For further reading, see [2, Section 5.3] or [1, Section 4.2].

3 Exercises

Find the general solution for each of the following differential equations.
I. $y^{\prime \prime}-2 y^{\prime}+y=3 t^{2}+4 t+1$.
II. $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}$.
III. $y^{\prime \prime}-3 y^{\prime}+2 y=3 e^{2 t}$
IV. $y^{\prime \prime}+2 y^{\prime}+2 y=5 e^{t} \cos (t)$.

References

[1] T. W. Judson, The Ordinary Differential Equations Project, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2023.
[2] W. Trench, Elementary Differential Equations with Boundary Value Problems, Creative Commons Attribution-Noncommercial-Share Alike, 1st ed., 2013.

